Read More
Date: 26-2-2020
![]()
Date: 15-3-2020
![]()
Date: 14-12-2019
![]() |
The Narayan number for
, 2, ... and
, ...,
gives a solution to several counting problems in combinatorics. For example,
gives the number of expressions with
pairs of parentheses that are correctly matched and contain
distinct nestings. It also gives the number Dyck paths of length
with exactly
peaks.
A closed-form expression of is given by
![]() |
where is a binomial coefficient.
Summing over gives the Catalan number
![]() |
Enumerating as a number triangle is called the Narayana triangle.
REFERENCES:
MacMahon, P. A. Combinatory Analysis, 2 vols. New York: Chelsea, 1960.
Narayana, T. V. Lattice Path Combinatorics with Statistical Applications. Toronto, Canada: University of Toronto Press, pp. 100-101, 1979.
Stanley, R. P. Problems 6.36(a) and (b) in Enumerative Combinatorics, Vol. 2. Cambridge, England: Cambridge University Press, 1999.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|