 
					
					
						Prime Triangle					
				 
				
					
						 المؤلف:  
						Guy, R. K
						 المؤلف:  
						Guy, R. K					
					
						 المصدر:  
						Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag
						 المصدر:  
						Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 10-1-2021
						10-1-2021
					
					
						 947
						947					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Prime Triangle
A triangle with rows containing the numbers ![<span style=]() {1,2,...,n}" src="https://mathworld.wolfram.com/images/equations/PrimeTriangle/Inline1.gif" style="height:15px; width:69px" /> that begins with 1, ends with
{1,2,...,n}" src="https://mathworld.wolfram.com/images/equations/PrimeTriangle/Inline1.gif" style="height:15px; width:69px" /> that begins with 1, ends with  , and such that the sum of each two consecutive entries being a prime. Rows 2 to 6 are unique,
, and such that the sum of each two consecutive entries being a prime. Rows 2 to 6 are unique,
(OEIS A051237) but there are multiple possibilities starting with row 7. For example, the two possibilities for row 7 are ![<span style=]() {1,4,3,2,5,6,7}" src="https://mathworld.wolfram.com/images/equations/PrimeTriangle/Inline3.gif" style="height:15px; width:107px" /> and
{1,4,3,2,5,6,7}" src="https://mathworld.wolfram.com/images/equations/PrimeTriangle/Inline3.gif" style="height:15px; width:107px" /> and ![<span style=]() {1,6,5,2,3,4,7}" src="https://mathworld.wolfram.com/images/equations/PrimeTriangle/Inline4.gif" style="height:15px; width:107px" />. The number of possible rows ending with
{1,6,5,2,3,4,7}" src="https://mathworld.wolfram.com/images/equations/PrimeTriangle/Inline4.gif" style="height:15px; width:107px" />. The number of possible rows ending with  , 2, ..., are 0, 1, 1, 1, 1, 1, 2, 4, 7, 24, 80, ... (OEIS A036440).
, 2, ..., are 0, 1, 1, 1, 1, 1, 2, 4, 7, 24, 80, ... (OEIS A036440).
REFERENCES:
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 106, 1994.
Kenney, M. J. "Student Math Notes." NCTM News Bulletin. Nov. 1986.
Sloane, N. J. A. Sequences A036440 and A051237 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					 الاكثر قراءة في  نظرية الاعداد
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة