Read More
Date: 5-8-2020
677
Date: 19-2-2020
805
Date: 14-2-2020
678
|
The Seidel-Entringer-Arnold triangle is the number triangle consisting of the Entringer numbers arranged in "ox-plowing" order,
giving
(OEIS A008280).
The plot above shows the binary representations for the first 255 (top figure) and 511 (bottom figure) terms of a flattened Seidel-Entringer-Arnold triangle.
REFERENCES:
Arnold, V. I. "Bernoulli-Euler Updown Numbers Associated with Function Singularities, Their Combinatorics, and Arithmetics." Duke Math. J. 63, 537-555, 1991.
Arnold, V. I. "Snake Calculus and Combinatorics of Bernoulli, Euler, and Springer Numbers for Coxeter Groups." Russian Math. Surveys 47, 3-45, 1992.
Conway, J. H. and Guy, R. K. In The Book of Numbers. New York: Springer-Verlag, 1996.
Dumont, D. "Further Triangles of Seidel-Arnold Type and Continued Fractions Related to Euler and Springer Numbers." Adv. Appl. Math. 16, 275-296, 1995.
Entringer, R. C. "A Combinatorial Interpretation of the Euler and Bernoulli Numbers." Nieuw Arch. Wisk. 14, 241-246, 1966.
Millar, J.; Sloane, N. J. A.; and Young, N. E. "A New Operation on Sequences: The Boustrophedon Transform." J. Combin. Th. Ser. A 76, 44-54, 1996.
Seidel, I. "Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen." Sitzungsber. Münch. Akad. 4, 157-187, 1877.
Sloane, N. J. A. Sequence A008280 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|