Read More
Date: 18-11-2019
1181
Date: 21-11-2020
1091
Date: 29-8-2020
634
|
The sequence of numbers obtained by letting , and defining
where is the least prime factor. The first few terms are 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, ... (OEIS A000945). Only 43 terms of the sequence are known; the 44th requires factoring a composite 180-digit number.
REFERENCES:
Guy, R. K. and Nowakowski, R. "Discovering Primes with Euclid." Delta (Waukesha) 5, 49-63, 1975.
Mullin, A. A. "Recursive Function Theory." Bull. Amer. Math. Soc. 69, 737, 1963.
Naur, T. "Mullin's Sequence of Primes Is Not Monotonic." Proc. Amer. Math. Soc. 90, 43-44, 1984.
Sloane, N. J. A. Sequence A000945/M0863 in "The On-Line Encyclopedia of Integer Sequences."
Wagstaff, S. S. "Computing Euclid's Primes." Bull. Institute Combin. Applications 8, 23-32, 1993.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|