 
					
					
						Euler-Jacobi Pseudoprime					
				 
				
					
						 المؤلف:  
						Guy, R. K.
						 المؤلف:  
						Guy, R. K.					
					
						 المصدر:  
						 "Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes." §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag
						 المصدر:  
						 "Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes." §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 23-1-2021
						23-1-2021
					
					
						 937
						937					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Euler-Jacobi Pseudoprime
An Euler-Jacobi pseudoprime to a base  is an odd composite number
 is an odd composite number  such that
 such that  and the Jacobi symbol
 and the Jacobi symbol  satisfies
 satisfies
(Guy 1994; but note that Guy calls these simply "Euler pseudoprimes"). No odd composite number is an Euler-Jacobi pseudoprime for all bases  relatively prime to it. This class includes some Carmichael numbers, all strong pseudoprimes to base
 relatively prime to it. This class includes some Carmichael numbers, all strong pseudoprimes to base  , and all Euler pseudoprimes to base
, and all Euler pseudoprimes to base  . An Euler pseudoprime is pseudoprime to at most 1/2 of all possible bases less than itself.
. An Euler pseudoprime is pseudoprime to at most 1/2 of all possible bases less than itself.
The first few base-2 Euler-Jacobi pseudoprimes are 561, 1105, 1729, 1905, 2047, 2465, ... (OEIS A047713), and the first few base-3 Euler-Jacobi pseudoprimes are 121, 703, 1729, 1891, 2821, 3281, 7381, ... (OEIS A048950). The number of base-2 Euler-Jacobi primes less than  ,
,  , ... are 0, 1, 12, 36, 114, ... (OEIS A055551).
, ... are 0, 1, 12, 36, 114, ... (OEIS A055551).
REFERENCES:
Guy, R. K. "Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes." §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 1994.
Pinch, R. G. E. "The Pseudoprimes Up to  ." ftp://ftp.dpmms.cam.ac.uk/pub/PSP/.
." ftp://ftp.dpmms.cam.ac.uk/pub/PSP/.
Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, 1994.
Sloane, N. J. A. Sequences A047713/M5461, A048950, and A055551 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					 الاكثر قراءة في  نظرية الاعداد
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة