Read More
Date: 27-1-2021
![]()
Date: 13-1-2020
![]()
Date: 30-5-2020
![]() |
When and
are integers such that
, define the Lucas sequence
by
![]() |
for , with
and
the two roots of
. Then define a Lucas pseudoprime as an odd composite number
such that
, the Jacobi symbol
, and
.
The congruence holds for every prime number
, where
is a Lucas number. However, some composites also satisfy this congruence. The Lucas pseudoprimes corresponding to the special case of the Lucas numbers
are those composite numbers
such that
. The first few of these are 705, 2465, 2737, 3745, 4181, 5777, 6721, ... (OEIS A005845).
The Wolfram Language implements the multiple Rabin-Miller test in bases 2 and 3 combined with a Lucas pseudoprime test as the primality test in the function PrimeQ[n].
REFERENCES:
Baillie, R. and Wagstaff, S. S. Jr. "Lucas Pseudoprimes." Math. Comput. 35, 1391-1417, 1980.
Bruckman, P. S. "Lucas Pseudoprimes are Odd." Fib. Quart. 32, 155-157, 1994.
Ribenboim, P. "Lucas Pseudoprimes (lpsp())." §2.X.B in The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, p. 129, 1996.
Sloane, N. J. A. Sequence A005845/M5469 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة: حفنة من الجوز يوميا تحميك من سرطان القولون
|
|
|
|
|
تنشيط أول مفاعل ملح منصهر يستعمل الثوريوم في العالم.. سباق "الأرنب والسلحفاة"
|
|
|
|
|
لتعزيز التواصل مع الزائرات الأجنبيات : العتبة العلويّة المقدّسة تُطلق دورة لتعليم اللغة الإنجليزية لخادمات القسم النسويّ
|
|
|