المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
دراسة تسلسل الDNA sequencing) DNA)
2025-01-13
قواعد في الإدارة / تقديم المنجزات الهامة
2025-01-13
قواعد الاهتمام بالبشر / حسن المعاشرة
2025-01-13
مبادئ رعاية الطفل
2025-01-13
الامراض والآفات التي تصيب الفول الرومي
2025-01-13
عندما يسيء طفلك التصرف ولا يستطيع البكاء: بناء حس الأمان
2025-01-13

امل الانسان بالعفو وإجابة الدعاء
23-10-2019
التحضر
20-5-2018
Sridhara
21-10-2015
هل الرعاشات الصغيرة والكبيرة مفيدة للإنسان؟
26-3-2021
Lipofuscin
2-12-2018
مرض الكساح (الاكارين) الذي يصيب النحل
20/10/2022

Six Exponentials Theorem  
  
1505   04:46 مساءً   date: 2-2-2021
Author : Finch, S. R.
Book or Source : "Powers of 3/2 Modulo One." §2.30.1 in Mathematical Constants. Cambridge, England: Cambridge University Press
Page and Part : ...


Read More
Date: 24-10-2019 716
Date: 16-9-2020 805
Date: 23-1-2021 642

Six Exponentials Theorem

Let (x_1,x_2) and (y_1,y_2,y_3) be two sets of complex numbers linearly independent over the rationals. Then at least one of

 e^(x_1y_1),e^(x_1y_2),e^(x_1y_3),e^(x_2y_1),e^(x_2y_2),e^(x_2y_3)

is transcendental (Waldschmidt 1979, p. 3.5). This theorem is due to Siegel, Schneider, Lang, and Ramachandra. The corresponding statement obtained by replacing y_1,y_2,y_3 with y_1,y_2 is called the four exponentials conjecture and remains unproven.


REFERENCES:

Finch, S. R. "Powers of 3/2 Modulo One." §2.30.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 194-199, 2003.

Ramachandra, K. "Contributions to the Theory of Transcendental Numbers. I, II." Acta Arith. 14, 65-78, 1967-68.

Ramachandra, K. and Srinivasan, S. "A Note to a Paper: 'Contributions to the Theory of Transcendental Numbers. I, II' by Ramachandra on Transcendental Numbers." Hardy-Ramanujan J. 6, 37-44, 1983.

Waldschmidt, M. Transcendence Methods. Queen's Papers in Pure and Applied Mathematics, No. 52. Kingston, Ontario, Canada: Queen's University, 1979.

Waldschmidt, M. "On the Transcendence Method of Gel'fond and Schneider in Several Variables." In New Advances in Transcendence Theory (Ed. A. Baker). Cambridge, England: Cambridge University Press, pp. 375-398, 1988.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.