Read More
Date: 28-7-2021
1157
Date: 10-7-2021
2489
Date: 6-7-2017
2532
|
A characterization of normal spaces which states that a topological space is normal iff, for any two nonempty closed disjoint subsets , and of , there is a continuous map such that and . A function with this property is called a Urysohn function.
This formulation refers to the definition of normal space given by Kelley (1955, p. 112) or Willard (1970, p. 99). In the statement for an alternative definition (e.g., Cullen 1968, p. 118), the word "normal" has to be replaced by .
REFERENCES:
Cullen, H. F. Introduction to General Topology. Boston, MA: Heath, p. 124, 1968.
Joshi, K. D. "The Urysohn Characterization of Normality." §7.3 in Introduction to General Topology. New Delhi, India: Wiley, pp. 177-182, 1983.
Kelley, J. L. General Topology. New York: Van Nostrand Company, p. 115, 1955.
Willard, S. General Topology. Reading, MA: Addison-Wesley, p. 102, 1970.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|