تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Unknot
المؤلف:
Adams, C. C.
المصدر:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
6-6-2021
2243
Unknot
The unknot, also called the trivial knot (Rolfsen 1976, p. 51), is a closed loop that is not knotted. In the 1930s Reidemeister first proved that knots exist which are distinct from the unknot by inventing and making use of the so-called Reidemeister moves and coloring each part of a knot diagram with one of three colors.
The unknot is implemented in the Wolfram Language as KnotData["Unknot"].
The knot sum of two unknots is another unknot.
The Jones polynomial of the unknot is defined to give the normalization
![]() |
(1) |
The unknot has Alexander polynomial and Conway polynomial
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Surprisingly, there are known examples of nontrivial knots with Alexander polynomial 1, although no such examples occur among the knots of 10 or fewer crossings. An example is the -pretzel knot (Adams 1994, p. 167). Rolfsen (1976, p. 167) gives four other such examples.
Haken (1961) devised an algorithm to tell if a knot projection is the unknot. The algorithm is so complicated, however, that it has never been implemented.
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 165-169, 1994.
Bar-Natan, D. "The Knot ." https://www.math.toronto.edu/~drorbn/KAtlas/Knots/0.1.html.
Haken, W. "Theorie der Normalflachen." Acta Math. 105, 245-375, 1961.
Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., p. 15, 1993.
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, 1976.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 264-265, 1999.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
