Read More
Date: 7-8-2021
1179
Date: 22-7-2021
2123
Date: 9-6-2021
1398
|
Also called the Tait flyping conjecture. Given two reduced alternating projections of the same knot, they are equivalent on the sphere iff they are related by a series of flypes. The conjecture was proved by Menasco and Thistlethwaite (1991, 1993) using properties of the Jones polynomial. It allows all possible reduced alternating projections of a given alternating knot to be drawn.
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 164-165, 1994.
Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First Knots." Math. Intell. 20, 33-48, Fall 1998.
Menasco, W. and Thistlethwaite, M. "The Tait Flyping Conjecture." Bull. Amer. Math. Soc. 25, 403-412, 1991.
Menasco, W. and Thistlethwaite, M. "The Classification of Alternating Links." Ann. Math. 138, 113-171, 1993.
Stewart, I. The Problems of Mathematics, 2nd ed. Oxford, England: Oxford University Press, pp. 284-285, 1987.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|