تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Tangle
المؤلف:
Adams, C. C.
المصدر:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
9-6-2021
2188
Tangle
A region in a knot or link projection plane surrounded by a circle such that the knot or link crosses the circle exactly four times. Two tangles are equivalent if a sequence of Reidemeister moves can be used to transform one into the other while keeping the four string endpoints fixed and not allowing strings to pass outside the circle.
The simplest tangles are the -tangle and 0-tangle, shown above. A tangle with
left-handed twists is called an
-tangle, and one with
right-handed twists is called a
-tangle. By placing tangles side by side, more complicated tangles can be built up such as (
, 3, 2), etc. The link created by connecting the ends of the tangles is now described by the sequence of tangle symbols, known as Conway's knot notation. If tangles are multiplied by 0 and then added, the resulting tangle symbols are separated by commas. Additional symbols which are used are the period, colon, and asterisk.
Amazingly enough, two tangles described in this notation are equivalent iff the continued fractions of the form
![]() |
are equal (Burde and Zieschang 2002)! An algebraic tangle is any tangle obtained by additions and multiplications of rational tangles (Adams 1994). Not all tangles are algebraic.
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman pp. 41-51, 1994.
Burde, G. and Zieschang, H. Knots, 2nd rev. ed. Berlin: de Gruyter, 2002.
Murasugi, K. and Kurpita, B. I. A Study of Braids. Dordrecht, Netherlands: Kluwer, 1999.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
