تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Alexander Polynomial
المؤلف:
Adams, C. C.
المصدر:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
10-6-2021
4033
Alexander Polynomial
The Alexander polynomial is a knot invariant discovered in 1923 by J. W. Alexander (Alexander 1928). The Alexander polynomial remained the only known knot polynomial until the Jones polynomial was discovered in 1984. Unlike the Alexander polynomial, the more powerful Jones polynomial does, in most cases, distinguish handedness.
In technical language, the Alexander polynomial arises from the homology of the infinitely cyclic cover of a knot complement. Any generator of a principal Alexander ideal is called an Alexander polynomial (Rolfsen 1976). Because the Alexander invariant of a tame knot in has a square presentation matrix, its Alexander ideal is principal and it has an Alexander polynomial denoted
.
Let be the matrix product of braid words of a knot, then
![]() |
(1) |
where is the Alexander polynomial and det is the determinant. The Alexander polynomial of a tame knot in
satisfies
![]() |
(2) |
where is a Seifert matrix, det is the determinant, and
denotes the transpose.
The Alexander polynomial is symmetric in and
and satisfies
![]() |
(3) |
where convention determines the sign. In this work, the convention is used. The quantity
is known at the knot determinant.
The notation is an abbreviation for the Alexander polynomial of a knot
![]() |
(4) |
The notation can also be extended for links, in which case one or more matrices is used to generate the corresponding multivariate Alexander polynomial (Rolfsen 1976, p. 389).
Let the Alexander polynomial of a link in the variable
be denoted
. Then there exists a skein relationship discovered by J. H. Conway,
![]() |
(5) |
corresponding to the above link diagrams (Adams 1994). This relation allows Alexander polynomials to be constructed for arbitrary knots by building them up as a sequence of over- and undercrossings.
The Alexander polynomial of a splittable link is always 0.
Surprisingly, there are known examples of nontrivial knots with Alexander polynomial 1, although no such examples occur among the knots of 10 or fewer crossings. An example is the -pretzel knot (Adams 1994, p. 167). Rolfsen (1976, p. 167) gives four other such examples.
A modified version of the Alexander polynomial was formulated by J. H. Conway. It is variously known as the Conway polynomial (Livingston 1993, pp. 207-215) or Conway-Alexander polynomial, and is denoted . It is a reparametrization of the Alexander polynomial given by
![]() |
(6) |
The skein relationship convention used by for the Conway polynomial is
![]() |
(7) |
(Doll and Hoste 1991).
Examples of Alexander and Conway
polynomials for common knots are given in the following table
knot ![]() |
![]() |
![]() |
trefoil knot | ![]() |
![]() |
figure eight knot | ![]() |
![]() |
Solomon's seal knot | ![]() |
![]() |
stevedore's knot | ![]() |
![]() |
Miller Institute knot | ![]() |
![]() |
For a knot,
(8) |
where Arf is the Arf invariant (Jones 1985).
The HOMFLY polynomial generalizes the Alexander polynomial (as well at the Jones polynomial) with
![]() |
(9) |
(Doll and Hoste 1991).
Rolfsen (1976) gives a tabulation of Alexander polynomials (in abbreviated notation) for knots up to 10 crossings and links up to 9 crossings. Livingston (1993) gives an explicit table of Alexander polynomials (with negative powers cleared and initial minus sign) for knots up to 9 crossings.
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 165-169, 1994.
Alexander, J. W. "Topological Invariants of Knots and Links." Trans. Amer. Math. Soc. 30, 275-306, 1928.
Alexander, J. W. "A Lemma on a System of Knotted Curves." Proc. Nat. Acad. Sci. USA 9, 93-95, 1923.
Bar-Natan, D. "The Rolfsen Knot Table." https://www.math.toronto.edu/~drorbn/KAtlas/Knots/.
Casti, J. L. "The Alexander Polynomial." Ch. 1 in Five More Golden Rules: Knots, Codes, Chaos, and Other Great Theories of 20th-Century Mathematics. New York: Wiley, pp. 1-34, 2000.
Doll, H. and Hoste, J. "A Tabulation of Oriented Links." Math. Comput. 57, 747-761, 1991.
Jones, V. "A Polynomial Invariant for Knots via von Neumann Algebras." Bull. Amer. Math. Soc. 12, 103-111, 1985.
Livingston, C. "Alexander Polynomials." Appendix 2 in Knot Theory. Washington, DC: Math. Assoc. Amer., pp. 229-232, 1993.
Murasugi, K. and Kurpita, B. I. A Study of Braids. Dordrecht, Netherlands: Kluwer, 1999.
Rolfsen, D. "Table of Knots and Links." Appendix C in Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 280-287, 1976.
Stoimenow, A. "Alexander Polynomials." https://www.ms.u-tokyo.ac.jp/~stoimeno/ptab/a10.html.
Stoimenow, A. "Conway Polynomials." https://www.ms.u-tokyo.ac.jp/~stoimeno/ptab/c10.html.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
