A 1-variable unoriented knot polynomial . It satisfies
(1) |
and the skein relationship
(2) |
It also satisfies
(3) |
where is the knot sum and
(4) |
where is the mirror image of . The BLM/Ho polynomials of mutant knots are also identical. Brandt et al. (1986) give a number of interesting properties. For any link with components, is divisible by . If has components, then the lowest power of in is , and
(5) |
where is the HOMFLY polynomial. Also, the degree of is less than the link crossing number of . If is a 2-bridge knot, then
(6) |
where (Kanenobu and Sumi 1993).
The polynomial was subsequently extended to the 2-variable Kauffman polynomial F, which satisfies
(7) |
Brandt et al. (1986) give a listing of polynomials for knots up to 8 crossings and links up to 6 crossings.
REFERENCES:
Brandt, R. D.; Lickorish, W. B. R.; and Millett, K. C. "A Polynomial Invariant for Unoriented Knots and Links." Invent. Math. 84, 563-573, 1986.
Ho, C. F. "A New Polynomial for Knots and Links--Preliminary Report." Abstracts Amer. Math. Soc. 6, 300, 1985.
Kanenobu, T. and Sumi, T. "Polynomial Invariants of 2-Bridge Knots through 22-Crossings." Math. Comput. 60, 771-778 and S17-S28, 1993.
Stoimenow, A. "Brandt-Lickorish-Millett-Ho Polynomials." http://www.ms.u-tokyo.ac.jp/~stoimeno/ptab/blmh10.html.
|
|
بـ3 خطوات بسيطة.. كيف تحقق الجسم المثالي؟
|
|
|
|
|
دماغك يكشف أسرارك..علماء يتنبأون بمفاجآتك قبل أن تشعر بها!
|
|
|
|
|
العتبة العباسية المقدسة تواصل إقامة مجالس العزاء بذكرى شهادة الإمام الكاظم (عليه السلام)
|
|
|