المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
شروط المقابلة الجيدة في البحوث
2025-01-15
{والذين كذبوا بآياتنا صم وبكم}
2025-01-15
{والذين كذبوا بآياتنا صم وبكم}
2025-01-15
المقابلة في البحوث
2025-01-15
مقياس جتمان Guttmann Scale
2025-01-15
{ الا امم امثالكم}
2025-01-15

الأفلاك الذرية
9-3-2018
شروط صحة الصوم
31-10-2016
اينشتاين ، البرت (البيرت)
14-10-2015
المواد - طبقات الاساس الركامية
2023-09-21
الخطبة
14-1-2016
LINEs Use an Endonuclease to Generate a Priming End
28-4-2021

Knot Group  
  
1231   06:21 مساءً   date: 19-6-2021
Author : Livingston, C
Book or Source : Knot Theory. Washington, DC: Math. Assoc. Amer., 1993.
Page and Part : ...

Knot Group

Given a knot diagram, it is possible to construct a collection of variables and equations, and given such a collection, a group naturally arises that is known as the group of the knot. While the group itself depends on the choices made in the construction, any two groups that arise in this way are isomorphic (Livingston 1993, p. 103).

For example, the knot group of the trefoil knot is

 <x,y|x^2=y^3>,

(1)

or equivalently

 <x,y|xyx=yxy>

(2)

(Rolfsen 1976, pp. 52 and 61), while that of Solomon's seal knot is

 <x,y|xyxyxy^(-1)x^(-1)y^(-1)x^(-1)y^(-1)>

(3)

(Livingston 1993, p. 127).

The group of a knot is not a complete knot invariant (Rolfsen 1976, p. 62). Furthermore, it is often quite difficult to prove that two knot group presentations represent nonisomorphic groups (Rolfsen 1976, p. 63).


REFERENCES:

Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., 1993.

Rolfsen, D. "The Knot Group." §3B in Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 51-52, 1976.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.