Read More
Date: 28-6-2017
1359
Date: 4-7-2021
1249
Date: 21-7-2021
1687
|
Let be the space in which a knot sits. Then the space "around" the knot, i.e., everything but the knot itself, is denoted and is called the knot complement of (Adams 1994, p. 84).
If a knot complement is hyperbolic (in the sense that it admits a complete Riemannian metric of constant Gaussian curvature ), then this metric is unique (Prasad 1973, Hoste et al. 1998).
REFERENCES:
Adams, C. C. "Knot Complements and Three-Manifolds." §9.1 in The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 243-246, 1994.
Cipra, B. "To Have and Have Knot: When are Two Knots Alike?" Science 241, 1291-1292, 1988.
Gordon, C. and Luecke, J. "Knots are Determined by their Complements." J. Amer. Math. Soc. 2, 371-415, 1989.
Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First Knots." Math. Intell. 20, 33-48, Fall 1998.
Prasad, G. "Stong Rigidity of -Rank 1 Lattices." Invent. Math. 21, 255-286, 1973.
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, 1976.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|