المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12


First Category  
  
1932   03:51 مساءً   date: 20-7-2021
Author : Hocking, J. and Young, G.
Book or Source : Topology. New York: Dover,
Page and Part : ...


Read More
Date: 24-7-2021 1156
Date: 7-6-2021 3467
Date: 14-6-2021 1610

First Category

A subset E of a topological space S is said to be of first category in S if E can be written as the countable union of subsets which are nowhere dense in S, i.e., if E is expressible as a union

 E= union _(n in N)E_n

where each subset E_n subset S is nowhere dense in S. Informally, one thinks of a first category subset as a "small" subset of the host space and indeed, sets of first category are sometimes referred to as meager. Sets which are not of first category are of second category.

An important distinction should be made between the above-used notion of "category" and category theory. Indeed, the notions of first and second category sets are independent of category theory.

The rational numbers are of first category and the irrational numbers are of second category in R with the usual topology. In general, the host space and its topology play a fundamental role in determining category. For example, the set Z of integers with the subset topology inherited from R is (vacuously) of second category relative to itself because every subset of Z is open in Z with respect to that topology; on the other hand, Z is of first category in R with its standard topology and in Q with the subset topology inherited by Q from R. Likewise, the Cantor set is a Baire space (i.e., each of its open sets are of second category relative to it) even though it is of first category in the interval [0,1] with the usual topology.


REFERENCES:

Hocking, J. and Young, G. Topology. New York: Dover, p. 89, 1961.

Morgan, J. C. Point Set Theory. Boca Raton, FL: CRC Press, p. 21, 1989.

Munkres, J. R. Topology: A First Course. Upper Saddle River, NJ: Prentice-Hall, pp. 293-294, 1975.

Rudin, W. Functional Analysis. New York: McGraw-Hill, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.