Interval					
				 
				
					
						
						 المؤلف:  
						Gemignani, M. C					
					
						
						 المصدر:  
						Elementary Topology. New York: Dover, 1990.					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						22-7-2021
					
					
						
						1993					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Interval

An interval is a connected portion of the real line. If the endpoints 
 and 
 are finite and are included, the interval is called closed and is denoted 
. If the endpoints are not included, the interval is called open and denoted 
. If one endpoint is included but not the other, the interval is denoted 
 or 
 and is called a half-closed (or half-open interval).
An interval 
 is called a degenerate interval.
If one of the endpoints is 
, then the interval still contains all of its limit points, so 
 and 
 are also closed intervals. Intervals involving infinity are also called rays or half-lines. If the finite point is included, it is a closed half-line or closed ray. If the finite point is not included, it is an open half-line or open ray.
The non-standard notation 
 for an open interval and 
 or 
 for a half-closed interval is sometimes also used.
A non-empty subset 
 of 
 is an interval iff, for all 
 and 
, 
 implies 
. If the empty set is considered to be an interval, then the following are equivalent:
1. 
 is an interval.
2. 
 is convex.
3. 
 is star convex.
4. 
 is pathwise-connected.
5. 
 is connected.
REFERENCES:
Gemignani, M. C. Elementary Topology. New York: Dover, 1990.
				
				
					
					
					 الاكثر قراءة في  التبلوجيا 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة