المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
آخر المواضيع المضافة
أثر الإنسان في تغيير البيئة وتأثير الصناعة والتكنولوجيا على البيئة الأثـر البيئـي فـي النـشـاط الاقتـصادي مـدخـل للأبعاد الاقتصاديـة للمشاكل البيئية وأثر التنمية المستدامة توصيات لنقل المجتمعات العربية إلى مجتمع المعلومات ومجتمع المعرفة مـتـطلبـات التـعليـم الإلكـترونـي المداخل الأساسية لنظريات الإعلام- المدخل الاقناعي: نظريات الإقناع توظيف النظريات المستخدمة في البحوث الإعلامية مرحلة تردد راديوي تسبق الكاشف لمحة تاريخية عن مستقبل إعادة التوليد عالي الأداء أساسيات إعادة التوليد Regeneration Basics ما ورد في شأن الرسول الأعظم والنبيّ الأكرم سيّدنا ونبيّنا محمّد (صلى الله عليه وآله) / القسم الثلاثون ما ورد في شأن الرسول الأعظم والنبيّ الأكرم سيّدنا ونبيّنا محمّد (صلى الله عليه وآله) / القسم التاسع والعشرون ما ورد في شأن الرسول الأعظم والنبيّ الأكرم سيّدنا ونبيّنا محمّد (صلى الله عليه وآله) / القسم الثامن والعشرون حاصلات بلاد النوبة المعاملات التجارية بين مصر وبلاد النوبة

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

Hans Wilhelm Eduard Schwerdtfeger
18-9-2017
البلمرة الكاتيونية للسايلوكسانات الحلقية Cationic Polymerization of Cyclic Siloxanes
14-11-2017
تمدد الجينوم Genome Expansion
13-6-2018
سبب الالتزام في الشيك
9-1-2019
دعاء الطريق الصحيح لتربية الأطفال
5-6-2017
الخصائص الادبية في القرآن المكّي
12-10-2014

Plane-Filling Function  
  
1070   02:27 صباحاً   date: 24-9-2021
Author : Bogomolny, A
Book or Source : "Plane Filling Curves." http://www.cut-the-knot.org/do_you_know/hilbert.shtml.
Page and Part : ...


Read More
Date: 1-1-2016 1550
Date: 24-11-2021 1252
Date: 2-10-2021 1326

Plane-Filling Function

PlaneFillingFunction

A space-filling function which maps a one-dimensional interval into a two-dimensional area. Plane-filling functions were thought to be impossible until Hilbert discovered the Hilbert curve in 1891.

Plane-filling functions are often (imprecisely) defined to be the "limit" of an infinite sequence of specified curves which "fill" the plane without "holes," hence the more popular term plane-filling curve. The term "plane-filling function" is preferable to "plane-filling curve" because "curve" informally connotes "function graph" (i.e., range) of some continuous function, but the function graph of a plane-filling function is a solid patch of two-space with no evidence of the order in which it was traced (and, for a dense set, retraced). Actually, all that is needed to rigorously define a plane-filling function is an arbitrarily refinable correspondence between contiguous subintervals of the domain and contiguous subareas of the range.

True plane-filling functions are not one-to-one. In fact, because they map closed intervals onto closed areas, they cannot help but overfill, revisiting at least twice a dense subset of the filled area. Thus, every point in the filled area has at least one inverse image.


REFERENCES:

Bogomolny, A. "Plane Filling Curves." http://www.cut-the-knot.org/do_you_know/hilbert.shtml.

Wagon, S. "A Space-Filling Curve." §6.3 in Mathematica in Action. New York: W. H. Freeman, pp. 196-209, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.