المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12

Send my hat
2024-01-30
نسيج اللحاء Phloem
25-2-2017
Manner of articulation
9-6-2022
حضارة الغساسنة
11-11-2016
الآيات التي تؤكّد على أنّ الشفاعة منوطة بإذن اللَّه
8-12-2015
Laser Pulsed operation: Q-Switching
5-3-2020

Grinberg Formula  
  
1951   11:06 صباحاً   date: 28-2-2022
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 15-5-2022 971
Date: 3-4-2022 1593
Date: 27-3-2022 1619

Grinberg Formula

A formula satisfied by all Hamiltonian cycles with n nodes. Let f_j be the number of regions inside the circuit with j sides, and let g_j be the number of regions outside the circuit with j sides. If there are d interior diagonals, then there must be d+1 regions

 [# regions in interior]=d+1=f_2+f_3+...+f_n.

(1)

Any region with j sides is bounded by j graph edges, so such regions contribute jf_j to the total. However, this counts each diagonal twice (and each graph edge only once). Therefore,

 2f_2+3f_3+...+nf_n=2d+n.

(2)

Take (2) minus 2×(1),

 f_3+2f_4+3f_5+...+(n-2)f_n=n-2.

(3)

Similarly,

 g_3+2g_4+...+(n-2)g_n=n-2,

(4)

so

 (f_3-g_3)+2(f_4-g_4)+3(f_5-g_5)+...+(n-2)(f_n-g_n)=0.

(5)

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.