تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Hypotraceable Graph
المؤلف:
Araya, M. and Wiener, G.
المصدر:
"On Cubic Planar Hypohamiltonian and Hypotraceable Graphs." Elec. J. Combin. 18
الجزء والصفحة:
...
1-3-2022
1568
Hypotraceable Graph
A graph is a hypotraceable graph if
has no Hamiltonian path (i.e., it is not a traceable graph), but
has a Hamiltonian path (i.e., is a traceable graph) for every
(Bondy and Murty 1976, p. 61).
There are no hypotraceable graphs on ten or fewer nodes (E. Weisstein, Dec. 11, 2013). In fact, the nonexistence of hypotraceable graphs on small numbers of vertices led T. Gallai to conjecture that no such graphs exist. This conjecture was refuted when a hypotraceable graph with 40 vertices was subsequently found by Horton (Grünbaum 1974, Thomassen 1974). Thomassen (1974) then showed that there exists a hypotraceable graph with vertices for
, 37, 39, 40, and all
. The smallest of these is the 34-vertex Thomassen graph (left figure above; Thomassen 1974; Bondy and Murty 1976, pp. 239-240).
Walter (1969) gave an example of a connected graph in which the longest paths do not have a vertex in common, a property shared by hypotraceable graphs.
The planar hypotraceable graphs are a class of special interest.
REFERENCES
Araya, M. and Wiener, G. "On Cubic Planar Hypohamiltonian and Hypotraceable Graphs." Elec. J. Combin. 18, 2001.
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p85/.Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, pp. 61 and 239-240, 1976
.Grotschel, M. "On the Monotone Symmetric Travelling Salesman Problem: Hypohamiltonian/Hypotraceable Graphs and Facets." Math. Operations Res. 5, 285-292, 1980.
Grünbaum, B. "Vertices Missed by Longest Paths or Circuits." J. Combin. Th. A 17, 31-38, 1974.
Holton, D. A. and Sheehan, J. The Petersen Graph. Cambridge, England: Cambridge University Press, 1993.Jooyandeh, M.; McKay, B. D.; Östergård, P. R. J.; Pettersson, V. H.; and Zamfirescu, C. T. "Planar Hypohamiltonian Graphs on 40 Vertices." J. Graph Th. 84, 121-133, 2017.
Kapoor, S. F.; Kronk, H. V.; and Lick, D. R. "On Detours in Graphs." Canad. Math. Bull. 11, 195-201, 1968.
Thomassen, C. "Hypohamiltonian and Hypotraceable Graphs." Disc. Math. 9, 91-96, 1974.
Walter, H. "Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen." J. Combin. Th. 6, 1-6, 1969
.Wiener, G. and Araya, M. "The Ultimate Question." 20 Apr 2009. http://arxiv.org/abs/0904.3012.Wiener, G. and Araya, M. "On Planar Hypotraceable Graphs." J. Graph Th. 67, 55-68, 2011.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
