Read More
Date: 11-5-2022
2120
Date: 6-3-2022
1457
Date: 10-3-2022
2273
|
In the directed graph above, pick any vertex and follow the arrows in sequence blue-red-red three times. You will finish at the green vertex. Similarly, follow the sequence blue-blue-red three times and you will always end on the yellow vertex, no matter where you started. This is called a synchronized coloring.
The road coloring problem is the problem of synchronizing coloring of a directed finite strongly connected graph with the same outdegree and where the greatest common divisor of all cycles lengths is 1. Trahtman (2007) provided a positive solution to this problem.
Adler, R. L.; Goodwyn, L. W.; Weiss, B. "Equivalence of Topological Markov Shifts." Israel J. Math. 27, 49-63, 1977.
Adler, R. L. and Weiss, B. Similarity of Automorphisms of the Torus. Providence, RI: Amer. Math. Soc., 1970.
Trahtman, A. N. "The Road Coloring Problem." 21 Dec 2007. http://arxiv.org/abs/0709.0099.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
قسم الشؤون الفكرية يصدر كتاب الفلسفة الغربية برؤية الشيخ مرتضى مطهري
|
|
|