 
					
					
						Total Dominating Set					
				 
				
					
						 المؤلف:  
						Henning, M. A. and Yeo, A.
						 المؤلف:  
						Henning, M. A. and Yeo, A.					
					
						 المصدر:  
						 Total Domination in Graphs. New York: Springer, 2013.
						 المصدر:  
						 Total Domination in Graphs. New York: Springer, 2013.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 15-3-2022
						15-3-2022
					
					
						 1480
						1480					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Total Dominating Set
 
For a graph  and a subset
 and a subset  of the vertex set
 of the vertex set  , denote by
, denote by ![N_G^t[S^t]](https://mathworld.wolfram.com/images/equations/TotalDominatingSet/Inline4.svg) the set of vertices in
 the set of vertices in  which are adjacent to a vertex in
 which are adjacent to a vertex in  . If
. If ![N_G^t[S^t]=V(G)](https://mathworld.wolfram.com/images/equations/TotalDominatingSet/Inline7.svg) , then
, then  is said to be a total dominating set (of vertices in
 is said to be a total dominating set (of vertices in  ). Because members of a total dominating set must be adjacent to another vertex, total dominating sets are not defined for graphs having an isolated vertex.
). Because members of a total dominating set must be adjacent to another vertex, total dominating sets are not defined for graphs having an isolated vertex.
The total dominating set differs from the ordinary dominating set in that in a total dominating set  , the members of
, the members of  are required to themselves be adjacent to a vertex in
 are required to themselves be adjacent to a vertex in  , whereas is an ordinary dominating set
, whereas is an ordinary dominating set  , the members of
, the members of  may be either in
 may be either in  itself or adjacent to vertices in
 itself or adjacent to vertices in  .
.

For example, in the Petersen graph illustrated above, the set ![S=<span style=]() {1,2,9}" src="https://mathworld.wolfram.com/images/equations/TotalDominatingSet/Inline17.svg" style="height:22px; width:98px" /> is a (minimum) dominating set (left figure), while
{1,2,9}" src="https://mathworld.wolfram.com/images/equations/TotalDominatingSet/Inline17.svg" style="height:22px; width:98px" /> is a (minimum) dominating set (left figure), while ![S^t=<span style=]() {4,8,9,10}" src="https://mathworld.wolfram.com/images/equations/TotalDominatingSet/Inline18.svg" style="height:22px; width:133px" /> is a (minimum) total dominating set (right figure).
{4,8,9,10}" src="https://mathworld.wolfram.com/images/equations/TotalDominatingSet/Inline18.svg" style="height:22px; width:133px" /> is a (minimum) total dominating set (right figure).
The size of a minimum total dominating set  is called the total domination number.
 is called the total domination number.
REFERENCES
Henning, M. A. and Yeo, A. Total Domination in Graphs. New York: Springer, 2013.
				
				
					
					 الاكثر قراءة في  نظرية البيان
					 الاكثر قراءة في  نظرية البيان					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة