تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Total Domination Number
المؤلف:
Azarija, J.; Henning, M. A.; and Klavžar, S.
المصدر:
(Total) Domination in Prisms." Electron. J. Combin. 24, No. 1, paper 1.19, 2017.
الجزء والصفحة:
...
15-3-2022
1954
Total Domination Number
The total domination number of a graph is the size of a smallest total dominating set, where a total dominating set is a set of vertices of the graph such that all vertices (including those in the set itself) have a neighbor in the set. Total dominating numbers are defined only for graphs having no isolated vertex (plus the trivial case of the singleton graph
).
For example, in the Petersen graph illustrated above, since the set
{1,2,9}" src="https://mathworld.wolfram.com/images/equations/TotalDominationNumber/Inline4.svg" style="height:22px; width:98px" /> is a minimum dominating set (left figure), while
since
{4,8,9,10}" src="https://mathworld.wolfram.com/images/equations/TotalDominationNumber/Inline6.svg" style="height:22px; width:133px" /> is a minimum total dominating set (right figure).
For any simple graph with no isolated points, the total domination number
and ordinary domination number
satisfy
(1) |
(Henning and Yeo 2013, p. 17). In addition, if is a bipartite graph, then
(2) |
(Azarija et al. 2017), where denotes the graph Cartesian product.
For a connected graph with vertex count
,
(3) |
(Cockayne et al. 1980, Henning and Yeo 2013, p. 11).
REFERENCES
Azarija, J.; Henning, M. A.; and Klavžar, S. "(Total) Domination in Prisms." Electron. J. Combin. 24, No. 1, paper 1.19, 2017.
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p19.Cockayne, E. J., Dawes, R. M., and Hedetniemi, S. T. "Total Domination in Graphs." Networks 10, 211-219, 1980.
Henning, M. A. and Yeo, A. Total Domination in Graphs. New York: Springer, 2013.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
