Random-Cluster Model
المؤلف:
Grimmett, G. R.
المصدر:
The Random-Cluster Model. Berlin: Springer-Verlag, 2009.
الجزء والصفحة:
...
19-3-2022
1546
Random-Cluster Model
Let
be a finite graph, let
be the set
{0,1}^E" src="https://mathworld.wolfram.com/images/equations/Random-ClusterModel/Inline3.svg" style="height:22px; width:90px" /> whose members are vectors
, and let
be the sigma-algebra of all subsets of
. A random-cluster model on
is the measure
on the measurable space
defined for each
by
 |
(1)
|
where here,
and
are parameters,
is the so-called partition function
{product_(e in E)p^(omega(e))(1-p)^(1-omega(e))}q^(k(omega)), " src="https://mathworld.wolfram.com/images/equations/Random-ClusterModel/NumberedEquation2.svg" style="height:41px; width:252px" /> |
(2)
|
and
denotes the number of connected components of the graph
where
{e in E:omega(e)=1}. " src="https://mathworld.wolfram.com/images/equations/Random-ClusterModel/NumberedEquation3.svg" style="height:21px; width:178px" /> |
(3)
|
The connected components of
are called open clusters.
In the above setting, the case
corresponds to a model in which graph edges are open (i.e.,
) or closed (i.e.,
) independently of one another, a scenario which can be used as an alternative definition for the term percolation. For cases
, the random-cluster model models dependent percolation.
REFERENCES
Grimmett, G. R. The Random-Cluster Model. Berlin: Springer-Verlag, 2009.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة