أهم أساليب تصنيف البيانات المستخدمة في إعداد خرائط الكوروبلث – التوزيعات المنحازة |
1913
03:28 مساءً
التاريخ: 28-3-2022
|
أقرأ أيضاً
التاريخ: 8-2-2016
63767
التاريخ: 27-3-2022
2641
التاريخ: 2024-10-22
520
التاريخ: 25-5-2018
13072
|
التوزيعات المنحازة Skewed Distribution:
عادة ما يكون توزيع قيم البيانات غير طبيعي، ويمكن أن تكون منحازة باتجاه معين، أو قد تظهر فجوات في التوزيع التكراري. هذه الأنواع من التوزيعات يمكن تصنيفها باستخدام فئات تعتمد على أرقام مدورة مناسبة Convenient Round Numbers رياضية Mathematic أو متوالية هندسية Geometric Series . تستخدم الأرقام المدورة لضمان تغطية الفئات لمدى قيم البيانات دون وجود فئات فارغة. فمثلا لو كانت معظم القيم مركزة في النهاية الدنيا للتوزيع ولكن بعض القيم مبعثرة ومنتشرة على مدى واسع نستطيع هنا تعديل مدى الفئات باستخدام مدى ضيق للفئات في حالة وجود تكرارات كثيرة للمشاهدات، أو استخدام مدى واسع للفئات في حالة وجود مشاهدات قليلة. باستخدام الأرقام المدورة المناسبة للفئات، يتحتم تحديد الفئات ليصبح 0-5، 5-10، 10-20، 20-50 ، 50-100.
إن هذا الأسلوب يمكن أن يكون فعالا عندما تكون البيانات منحازة وغير موزعة طبيعياً، ويجعل من المقارنات امراً صعباً. هناك أسلوب آخر للتعامل مع التوزيعات المنحازة يقوم على بناء الفئات على متوالية رياضية أو هندسية. للحصول على متوالية رياضية نحدد مدى الفئة الأصغر، ثم نزيد المدى للفئات التالية بإضافة قيمة ثابتة. فمثلاً يمكن أن نستخدم مدى فئة يساوي 7 لأصغر فئة، ثم نزيد المدى بمقدار 7 لكل فئة من الفئات التالية، فتصبح الفئات الناتجة 7-0، 21-7، 42-21، 70-42، 105-70. أما إذا كان توزيع القيم منحازا بشكل كبير، فيتحتم استخدام متوالية هندسيةGeometric Series ، وبالطريقة السابقة نفسها نختار مدى للفئة الدنيا، ثم نزيد المدى للفئات التالية بضرب المدى بثابت معين. فمثلاً، إذا بدأنا بمدى فئة يساوي 4 وضاعفنا المدى لكل فئة تالية، فإن الفئات الناتجة تكون 0-4 ، 4-12 ، 12-28 ، 28-60 ، 60-124.
|
|
بـ3 خطوات بسيطة.. كيف تحقق الجسم المثالي؟
|
|
|
|
|
دماغك يكشف أسرارك..علماء يتنبأون بمفاجآتك قبل أن تشعر بها!
|
|
|
|
|
العتبة العباسية المقدسة تواصل إقامة مجالس العزاء بذكرى شهادة الإمام الكاظم (عليه السلام)
|
|
|