المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
خواص المتضادات الضوئية
2025-01-11
البروتوبلازم Protoplasm
2025-01-11
الجليد القاري (حقول الجليد)
2025-01-11
السحب الاصطناعي
2025-01-11
تفاعلات الهاليدات العضوية
2025-01-11
قواعد في الإدارة / الوضوح في الرؤية
2025-01-11

معايير التنمية الزراعية المستدامة
30-11-2021
اُسس البناء الذاتي
24-11-2014
Instruments that Measure Volume
19-5-2019
Hydrophobic Chromatography
23-5-2016
Chomsky hierarchy
2023-06-28
ديوان شعر منسوب للإمام
31-3-2016

Prüfer Code  
  
1491   06:20 مساءً   date: 6-5-2022
Author : Prüfer, H
Book or Source : "Neuer Beweis eines Satzes über Permutationen." Arch. Math. Phys. 27
Page and Part : ...


Read More
Date: 27-2-2022 1976
Date: 15-5-2022 1289
Date: 9-2-2016 1602

Prüfer Code

 

LabeledTrees

An encoding which provides a bijection between the n^(n-2) labeled trees on n nodes and strings of n-2 integers chosen from an alphabet of the numbers 1 to n. A labeled tree can be converted to a Prüfer code using LabeledTreeToCode[g] in the Wolfram Language package Combinatorica` , and a code can be converted to a labeled tree using CodeToLabeledTree[code].

PrueferCode

Prüfer's bijection is based on the fact that every tree has at least two nodes of degree 1 (i.e., tree leaves. Therefore, the node v which is incident to the lowest labeled leaf is uniquely determined, and v is then taken as the first symbol in the code. This lowest labeled leaf is then deleted and the procedure is repeated until a single edge is left, giving a total of n-2 integers between 1 and n (Skiena 1990). This is demonstrated in the labeled tree shown above. The sequence of leaf deletions is 4, 6, 2, 1, 7, and 3, corresponding to incident nodes 1, 2, 1, 3, 3, and 5, respectively.


REFERENCES

Prüfer, H. "Neuer Beweis eines Satzes über Permutationen." Arch. Math. Phys. 27, 742-744, 1918.

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.