

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Petersen,s Theorem
المؤلف:
Errera, A
المصدر:
"Du colorage des cartes." Mathesis 36
الجزء والصفحة:
...
10-5-2022
2478
Petersen's Theorem
Petersen's theorem states that every cubic graph with no bridges has a perfect matching (Petersen 1891; Frink 1926; König 1936; Skiena 1990, p. 244). In fact, this theorem can be extended to read, "every cubic graph with 0, 1, or 2 bridges has a perfect matching."
The graph above shows the smallest counterexample for 3 bridges, namely a connected cubic graph on 16 vertices having no perfect matchings. This graph is implemented in the Wolfram Language as GraphData[{" src="https://mathworld.wolfram.com/images/equations/PetersensTheorem/Inline1.svg" style="height:21px; width:6px" />"Cubic",
{" src="https://mathworld.wolfram.com/images/equations/PetersensTheorem/Inline2.svg" style="height:21px; width:6px" />16, 14
}" src="https://mathworld.wolfram.com/images/equations/PetersensTheorem/Inline3.svg" style="height:21px; width:6px" />
}" src="https://mathworld.wolfram.com/images/equations/PetersensTheorem/Inline4.svg" style="height:21px; width:6px" />].
Errera (1922) strengthened Petersen's theorem by proving that if all bridges of a connected cubic graph lie on a single path of
, then
has a perfect matching.
REFERENCES
Errera, A. "Du colorage des cartes." Mathesis 36, 56-60, 1922.
Frink, O. "A Proof of Petersen's Theorem." Ann. Math. 27, 491-493, 1926.
König, D. Theorie der endlichen und unendlichen Graphen; kombinatorische Topologie der Streckenkomplexe. 1936.
Petersen, J. "Die Theorie der Regulären Graphen." Acta Math. 15, 193-200, 1891.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 244, 1990.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)