تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Traceable Graph
المؤلف:
Clapham, C. R. J.
المصدر:
. "Hamiltonian Arcs in Self-Complementary Graphs." Disc. Math. 8
الجزء والصفحة:
...
13-5-2022
1571
Traceable Graph
A traceable graph is a graph that possesses a Hamiltonian path. Hamiltonian graphs are therefore traceable, but the converse is not necessarily true. Graphs that are not traceable are said to be untraceable.
The numbers of traceable graphs on , 2, ... are 1, 1, 2, 5, 18, 91, 734, ... (OEIS A057864), where the singleton graph
is conventionally considered traceable. The first few are illustrated above, with a Hamiltonian path indicated in orange for each.
Every self-complementary graph is traceable (Clapham 1974; Camion 1975; Farrugia 1999, p. 52).
The following table lists some named graphs that are traceable but not Hamiltonian.
graph |
|
theta-0 graph | 7 |
Petersen graph | 10 |
Herschel graph | 11 |
Blanuša snarks | 18 |
flower snark |
20 |
Coxeter graph | 28 |
double star snark | 30 |
Tutte's graph | 46 |
Szekeres snark | 50 |
McLaughlin graph | 276 |
REFERENCES
Camion, P. "Hamiltonian Chains in Self-Complementary Graphs." In Colloque sur la théorie des graphes (Paris, 1974) (Ed. P. P. Gillis and S. Huyberechts). Cahiers du Centre Études de Recherche Opér. (Bruxelles) 17, pp. 173-183, 1975.
Clapham, C. R. J. "Hamiltonian Arcs in Self-Complementary Graphs." Disc. Math. 8, 251-255, 1974.
Farrugia, A. "Self-Complementary Graphs and Generalisations: a Comprehensive Reference Manual." Aug. 1999. http://www.alastairfarrugia.net/sc-graph/sc-graph-survey.pdf.
Sloane, N. J. A. Sequence A057864 in "The On-Line Encyclopedia of Integer Sequences."Thomassen, C. "Hypohamiltonian and Hypotraceable Graphs." Disc. Math. 9, 91-96, 1974.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
