

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Walk
المؤلف:
Festinger, L
المصدر:
"The Analysis of Sociograms Using Matrix Algebra." Human Relations 2
الجزء والصفحة:
...
13-5-2022
1616
Walk
A walk is a sequence ,
,
, ...,
of graph vertices
and graph edges
such that for
, the edge
has endpoints
and
(West 2000, p. 20). The length of a walk is its number of edges.
A -walk is a walk with first vertex
and last vertex
, where
and
are known as the endpoints. Every
-walk contains a
-graph path (West 2000, p. 21).
A walk is said to be closed if its endpoints are the same. The number of (undirected) closed -walks in a graph with adjacency matrix
is given by
, where
denotes the matrix trace. In order to compute the number
of
-cycles, all closed
-walks that are not cycles must be subtracted. Similarly, to compute the number
of graph paths, all
-walks that are not graph paths (because they contain redundant vertices) must be subtracted (cf. Festinger 1949, Ross and Harary 1952).
For a simple graph (which has no multiple edges), a walk may be specified completely by an ordered list of vertices (West 2000, p. 20).
A trail is a walk with no repeated edges.
REFERENCES
Festinger, L. "The Analysis of Sociograms Using Matrix Algebra." Human Relations 2, 153-158, 1949.
Ross, I. C. and Harary, F. "On the Determination of Redundancies in Sociometric Chains." Psychometrika 17, 195-208, 1952.
West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 20-21, 2000.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)