المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الاعراب بالحروف
2025-01-27
الأفعال الناقصة
2025-01-27
التذكير والتأنيث
2025-01-27
التصغير
2025-01-27
الجغرافيا الطبيعية
2025-01-27
تعريف علم الجغرافيا
2025-01-27

المكافأة
22/11/2022
احترام الزوجة وعدم توهينها
2024-09-07
Spin moment
12-2-2021
الحرب والفساد الأخلاقي
2024-07-24
السيد رضا بن إسماعيل بن إبراهيم الموسوي
16-8-2017
صور اختصام الغير بناء على طلب أحد الخصوم
1-5-2022

Graph Strength  
  
3316   07:33 مساءً   date: 20-5-2022
Author : Capobianco, M. C. and Molluzzo, J. C.
Book or Source : "The Strength of a Graph and Its Application to Organizational Structure." Social Networks 2,
Page and Part : ...


Read More
Date: 1-5-2022 2087
Date: 2-3-2022 1601
Date: 28-7-2016 1672

Graph Strength

 

There are several definitions of the strength of a graph.

Harary and Palmer (1959) and Harary and Palmer (1973, p. 66) define the strength of a tree as the maximum number of edges between any pair of vertices. This definition corresponds to a tree's graph diameter.

Harary and Palmer (1973, p. 117) define the strength of a multigraph as the maximum number of edges joining any two adjacent vertices.

GraphStrengthCapobiancoMolluzzo

Capobianco and Molluzzo (1979-1980) define the strength of a separable graph as 1/S.S, where the strength vector S of a graph is defined as the vector {s_i} of increases s_i in the connected component count upon deletion of vertex i. For example, the Capobianco-Molluzzo strength vector of the graph illustrated above is {-1,0,0,0,0,2,1,1,0}. The Capobianco-Molluzzo strength of a nonseparable graph is then defined to be infty.

The most standard definition of the strength sigma(G) of a simple connected graph G is

 sigma(G)=min_(S)(|S|)/(c(G-S)-1),

where c is the number of connected components and the minimum is taken over all edge cuts S of G (Gusfield 1983, 1991). Here, the subtraction by one in the denominator gives the number of additional connected components created. Graph strength therefore gives a measure of the resistance of a graph to edge-deletion, and so is a measure of vulnerability of a network to attack (Cunningham 1985, Gusfield 1991) and can be naturally generalized to edge-weighted graphs. Computing the strength of a graph can be done in polynomial time (Cunningham 1985, Trubin 1993).

While one could take sigma(G)=0 for disconnected graphs, using the definition of edge cuts as cuts that increase the number of connected components, the definition can be applied to give well-defined strengths for disconnected graphs.

A vertex cut analog of toughness is known as graph toughness.

The Tutte-Nash-Williams theorem states that |_sigma(G)_|, where |_x_| is the floor function, is the maximum number of edge-disjoint spanning trees that can be contained in a graph G (Gusfield 1984, Cunningham 1985).


REFERENCES

Capobianco, M. C. and Molluzzo, J. C. "The Strength of a Graph and Its Application to Organizational Structure." Social Networks 2, 275-283, 1979-1980.

Cunningham, W. H. "Optimal Attack and Reinforcement of a Network." J. Assoc. Comput. Mach. 32, 549-561, 1985.

Gusfield, D. "Connectivity and Edge Disjoint Spanning Trees." Inf. Proc. Lett. 16, 97-99, 1983.

Gusfield, D. "Computing the Strength of a Graph." SIAM J. Comput. 20, 639-654, 1991.

Harary, F. and Prins, G. "The Number of Homeomorphically Irreducible Trees, and Other Species." Acta Math. 101, 141-162, 1959.

Harary, F. and Palmer, E. M. Graphical Enumeration. New York: Academic Press, pp. 66 and 117, 1973.

Nash-Williams, C. St. J. A. "Edge-Disjoint Spanning Trees of Finite Graphs." J. London Math. Soc. 36, 445-450, 1961.

Schrijver, A. Combinatorial Optimization: Polyhedra and Efficiency, Vol. B. Berlin: Springer-Verlag, pp. 878 and 891, 2003.

Trubin, V. A. "Strength of a Graph and Packing of Trees and Branchings." Cyber. Syst. Anal. 29, 379-384, 1993.

Tutte, W. T. "On the Problem of Decomposing a Graph Into Connected Factors." J. London Math. Soc. 36, 221-230, 1961.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.