المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11606 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

آداب ضيافة شهر رمضان
16-12-2015
حقائق لابد أن يعيها الشباب في سيرهم التكاملي
15-11-2017
(Count Buffon (Georges-Louis Leclerc
13-10-2015
حميد بن سعدة
26-7-2017
الشروط الشكلية لممارسة العمل
2023-05-08
معنى كلمة قبس‌
10-12-2015


The ω,k four-vector  
  
978   01:40 صباحاً   التاريخ: 2024-03-28
المؤلف : Richard Feynman, Robert Leighton and Matthew Sands
الكتاب أو المصدر : The Feynman Lectures on Physics
الجزء والصفحة : Chapter 34
القسم : علم الفيزياء / الفيزياء الكلاسيكية / علم البصريات / مواضيع عامة في علم البصريات /


أقرأ أيضاً
التاريخ: 6-2-2021 1845
التاريخ: 2024-03-21 833
التاريخ: 9-1-2021 1548
التاريخ: 2024-03-30 817

Now the wave number is the rate of change of phase with distance, and the frequency is the rate of change of phase with time, and in these expressions, we see a close analogy with the Lorentz transformation of the position and time: if ω is thought of as being like t, and k is thought of as being like x divided by c2, then the new ω′ will be like t′, and the new k′ will be like x′/c2. That is to say, under the Lorentz transformation ω and k transform the same way as do t and x. They constitute what we call a four-vector; when a quantity has four components transforming like time and space, it is a four-vector. Everything seems all right, then, except for one little thing: we said that a four-vector has to have four components; where are the other two components? We have seen that ω and k are like time and space in one space direction, but not in all directions, and so we must next study the problem of the propagation of light in three space dimensions, not just in one direction, as we have been doing up until now.

Fig. 34–11. A plane wave travelling in an oblique direction.

 

Suppose that we have a coordinate system, x, y, z, and a wave which is travelling along and whose wavefronts are as shown in Fig. 34–11. The wavelength of the wave is λ, but the direction of motion of the wave does not happen to be in the direction of one of the axes. What is the formula for such a wave? The answer is clearly cos(ωt−ks), where k=2π/λ and s is the distance along the direction of motion of the wave—the component of the spatial position in the direction of motion. Let us put it this way: if r is the vector position of a point in space, then s is r⋅ek, where ek is a unit vector in the direction of motion. That is, s is just rcos(r,ek), the component of distance in the direction of motion. Therefore, our wave is cos(ωt−kek⋅r).

Now it turns out to be very convenient to define a vector k, which is called the wave vector, which has a magnitude equal to the wave number, 2π/λ, and is pointed in the direction of propagation of the waves:

Using this vector, our wave can be written as cos(ωt−k⋅r), or as cos(ωt−kxx−kyy−kzz). What is the significance of a component of k, say kx? Clearly, kx is the rate of change of phase with respect to x. Referring to Fig. 34–11, we see that the phase changes as we change x, just as if there were a wave along x, but of a longer wavelength. The “wavelength in the x-direction” is longer than a natural, true wavelength by the secant of the angle α between the actual direction of propagation and the x-axis:

Therefore the rate of change of phase, which is proportional to the reciprocal of λx, is smaller by the factor cosα; that is just how kx would vary—it would be the magnitude of k, times the cosine of the angle between k and the x-axis!

That, then, is the nature of the wave vector that we use to represent a wave in three dimensions. The four quantities ω, kx, ky, kz transform in relativity as a four-vector, where ω corresponds to the time, and kx, ky, kz correspond to the x-, y-, and z-components of the four-vector.

There are ways of making relativistic dot products with four-vectors. If we use the position vector xμ, where μ stands for the four components (time and three space ones), and if we call the wave vector kμ, where the index μ again has four values, time and three space ones, then the dot product of xμ and kμ is written ∑′kμxμ. This dot product is an invariant, independent of the coordinate system; what is it equal to? By the definition of this dot product in four dimensions, it is

We know from our study of vectors that ∑′kμxμ is invariant under the Lorentz transformation, since kμ is a four-vector. But this quantity is precisely what appears inside the cosine for a plane wave, and it ought to be invariant under a Lorentz transformation. We cannot have a formula with something that changes inside the cosine, since we know that the phase of the wave cannot change when we change the coordinate system.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.