المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

Pelvic Vasculature
18-7-2021
مقدّمة أخلاقيّة.
2023-12-11
أبو الأسود الدوَلي
18-8-2016
عنوان المفارقة (التناقض)
29-11-2019
خبر علي (عليه السلام) في سرية زيد بن حارثة
19-10-2015
Moritz Abraham Stern
3-11-2016

Giulio Carlo Fagnano dei Toschi  
  
1054   02:26 صباحاً   date: 27-1-2016
Author : A Natucci
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 29-1-2016 970
Date: 27-1-2016 880
Date: 31-1-2016 1134

Born: 6 December 1682 in Sinigaglia (now Senigallia), Italy
Died: 26 September 1766 in Sinigaglia (now Senigallia), Italy

 

Giulio Fagnano's father was Francesco Fagnano and his mother was Camilla Bartolini. Giulio was born into one of the leading families in Sinigaglia. The town of Sinigaglia, now known as Senigallia, is in central Italy and at the time of Giulio's birth was part of the Papal States. In fact the family went back very many generations in their association with Sinigaglia and one of the members of the family in the 12th century had been Lamberto Scannabecchi who became Pope Honorius II in 1124.

Fagnano was brought up to follow the family tradition of high office in Sinigaglia. He was appointed gonfaloniere in 1723. Gonfaloniere literally means "standard bearer" and it was a title of high civic magistrates in the medieval Italian city-states such as Sinigaglia. Such offices were not easy in these times and Fagnano was subjected to many false charges made against him by envious citizens who were maliciously trying to damage his reputation. Fagnano had many children, one of whom was Giovanni Fagnano who followed in his father's footsteps becoming interested in mathematics.

Giulio Fagnano was self educated in mathematics and treated the subject as a hobby. However, he achieved considerable international fame as a mathematician, and rightly so given the outstanding contributions which he made on a number of different topics.

Fagnano suggested new methods of solving equations of degree 2, 3 and 4. He improved Bombelli's work on complex numbers giving a famous formula

π/2 = √ log[(1 - i)/(1 + i)].

One of the topics for which Fagnano is best known is his work on triangles. Natucci in [1] writes:-

... he may well be considered the founder of the geometry of the triangle.

Considering triangles he looked at interesting problems such as:

Given ABC find P minimising PA2 + PB2 + PC2.

For a quadrilateral ABCD find P minimising AP + BP + CP + DP.

He also discovered that if X is the centre of gravity of the triangle ABC then XA2 + XB2 + XC2 = (AB2 + BC2 + CA2)/3.

In his study of the rectification of the lemniscate, Fagnano introduced ingenious analytic transformations that laid the foundation for the theory of elliptic integrals and his work was to lead to elliptic functions. Fagnano collected many of his published works, and a few unpublished ones, and produced the two volume treatise Produzioni matematiche in 1750. In 1751 Euler was asked to examine Produzioni matematiche and he found in this treatise relations between special types of elliptic integrals, that express the length of an arc of a lemniscate, which were quite unexpected to him. Generalising Fagnano's results, Euler went on to create a general theory of these integrals, in particular giving the famous addition formula for elliptic integrals. Fagnano had proved the duplication formula, a particular case of the addition formula, for the integrals.

In fact Fagnano had proved remarkable properties of the lemniscate, including the fact that its arcs may be divided in n equal parts using a ruler and compass construction, where n = 2×2m, 3×2m, or 5×2m. He also found the area of the lemniscate.

Fagnano made many other major contributions but his mathematical work was not without controversy. He was involved in priority disputes with Nicolaus(I) Bernoulli and, not surprisingly, the big dispute of the day which was between the supporters of Newton and those of Leibniz. Brook Taylor issued a challenge which Bernoulli and Fagnano both answered; the background and details of this controversy are studied in [3].

Fagnano received many honours. He had the title of count conferred on him by Louis XV in 1721, was elected to the Royal Society of London in 1723, and was made a marquis of Sant' Onofrio in 1745. In addition he was elected to the Berlin Academy of Sciences and was proposed for the Paris Académie des Sciences in 1766 but died before he could be elected.


 

  1. A Natucci, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830901374.html

Articles:

  1. R Ayoub, The lemniscate and Fagnano's contributions to elliptic integrals, Arch. Hist. Exact Sci. 29 (2) (1984), 131-149.
  2. L Conte, Bernoulli, G C de' Toschi di Fagnano e la sfida di Brook Taylor, Bul. Inst. Politech. Iasi 4 (1949), 36-53.
  3. Giulio Cesare Fagnano, Enciclopedia italiana XIV (1932).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.