المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12


paths  
  
1850   01:48 مساءاً   date: 6-8-2016
Author : Jean-Claude Fournier
Book or Source : Graph Theory and Applications
Page and Part : 29-31


Read More
Date: 22-3-2022 1659
Date: 17-5-2022 1163
Date: 23-4-2022 1986

In this section we return to the Konigsberg Bridge Problem, determining when it is possible to traverse all the edges of a graph. We also we develop useful properties of connection, paths, and cycles.

path

A walk of a graph G =(X,E) is a sequence of the form:

where k is an integer ≥ 0, xi are vertices of G, and ei are edges of G such that for i =0,...,k − 1, xi and xi+1 are the end vertices of ei+1. The vertices x0 and xk are the ends of the walk, and we say that they are linked by the walk. The integer k is the length of the walk. A walk may have zero length. It is then reduced to a sequence containing only one vertex. When G is a simple graph, a walk may be simply defined by the sequence (x0,x1,...,xk)of its

vertices. A sub walk of a walk is a walk defined as a subsequence between two vertices of the sequence defining the walk being considered.

A walk is called a trail if its edges ei, for i =1,...,k are all distinct. Wesay that the walk does not go twice through the same edge.

 

A walk is called a path if its vertices xi, for i =0, 1,...,k are pairwise distinct. It should be noted that a path is necessarily a trail.

The following result is often useful for reasonings where walks are concerned.

Lemma 1.1.

In a graph, if two vertices are connected by a walk then theyare connected by a path.

proof.Given a walk linking the vertices x and x/of a graph G and in which one vertex appears twice:

where xi = xj with 0 ≤ i<j ≤ k. The walk can be shortened by removing the subsequence (sub walk) between xi and xj , which gives a new walk still linking x and x/ .

By repeating this shortening process as long as there is a vertex that can befound twice in the walk, that is as long as the walk is not a path, we end up obtaining a path linking the vertices x and x/ .


Introduction to Graph Theory Second Edition, Douglas B. West , Indian Reprint, 2002,page(19)

Graph Theory  and Applications ,Jean-Claude Fournier,WILEY,page(29-31)

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.