تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Topological Spaces-Metric Spaces
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
1-3
22-9-2016
1991
Definition A metric space (X, d) consists of a set X together with a distance function d: X × X → [0, +∞) on X satisfying the following axioms:
(i) d(x, y) ≥ 0 for all x, y ∈ X,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,
(iv) d(x, y) = 0 if and only if x = y.
The quantity d(x, y) should be thought of as measuring the distance between the points x and y. The inequality d(x, z) ≤ d(x,y)+d(y, z) is referred to as the Triangle Inequality. The elements of a metric space are usually referred to as points of that metric space.
An n-dimensional Euclidean space Rn is a metric space with with respectto the Euclidean distance function d, defined by
for all x, y ∈ Rn. Any subset X of Rn may be regarded as a metric space whose distance function is the restriction to X of the Euclidean distance function on R n defined above.
Definition: Let (X, d) be a metric space. Given a point x of X and r ≥ 0, the open ball BX(x, r) of radius r about x in X is defined by
BX(x, r) ≡ {x΄ ∈ X : d(x΄, x) < r}.
Definition: Let (X, d) be a metric space. A subset V of X is said to be an open set if and only if the following condition is satisfied:
• given any point v of V there exists some δ > 0 such that BX(v, δ) ⊂ V .
By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in this case.)
Lemma 1.1 Let X be a metric space with distance function d, and let x0 be a point of X. Then, for any r > 0, the open ball BX(x0, r) of radius r about
x0 is an open set in X.
Proof Let x ∈ BX(x0, r). We must show that there exists some δ > 0 such that BX(x, δ) ⊂ BX(x0, r). Now d(x, x0) < r, and hence δ > 0, where
δ = r − d(x, x0). Moreover if x΄ ∈ BX(x, δ) then
d(x΄, x0) ≤ d(x΄, x) + d(x, x0) < δ + d(x, x0) = r,
by the Triangle Inequality, hence x΄ ∈ BX(x0, r). Thus BX(x, δ) ⊂ BX(x0, r), showing that BX(x0, r) is an open set, as required.
Proposition 1.2 Let X be a metric space. The collection of open sets in X has the following properties:—
(i) the empty set ∅ and the whole set X are both open sets;
(ii) the union of any collection of open sets is itself an open set;
(iii) the intersection of any finite collection of open sets is itself an open set.
Proof The empty set ∅ is an open set by convention. Moreover the definition of an open set is satisfied trivially by the whole set X. Thus (i) is satisfied.
Let A be any collection of open sets in X, and let U denote the union of all the open sets belonging to A. We must show that U is itself an open set.
Let x ∈ U. Then x ∈ V for some open set V belonging to the collection A. Therefore there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U, and thus BX(x, δ) ⊂ U. This shows that U is open. Thus (ii) is satisfied.
Finally let V1, V2, V3, . . . , Vk be a finite collection of open sets in X, and let V = V1 ∩ V2 ∩ · · · ∩ Vk. Let x ∈ V . Now x ∈ Vj for all j, and therefore there exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj ) ⊂ Vj for j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0.
(This is where we need the fact that we are dealing with a finite collection of open sets.) Moreover BX(x, δ) ⊂ BX(x, δj ) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(x, δ) ⊂ V . This shows that the intersection V of the open sets V1, V2, . . . , Vk is itself open. Thus (iii) is satisfied.
Any metric space may be regarded as a topological space. Indeed let X be a metric space with distance function d. We recall that a subset V of X is an open set if and only if, given any point v of V , there exists some δ > 0 such that {x ∈ X : d(x, v) < δ} ⊂ V . Proposition 1.2 shows that the topological space axioms are satisfied by the collection of open sets in any metric space. We refer to this collection of open sets as the topology generated by the distance function d on X.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
