Read More
Date: 29-7-2021
![]()
Date: 8-7-2021
![]()
Date: 17-5-2021
![]() |
Definition: Let X be a topological space. A subset F of X is said to be a closed set if and only if its complement X F is an open set.
We recall that the complement of the union of some collection of subsets of some set X is the intersection of the complements of those sets, and the complement of the intersection of some collection of subsets of X is the union of the complements of those sets. The following result therefore follows directly from the definition of a topological space.
Proposition 1.1 Let X be a topological space. Then the collection of closed sets of X has the following properties:—
(i) the empty set ∅ and the whole set X are closed sets,
(ii) the intersection of any collection of closed sets is itself a closed set,
(iii) the union of any finite collection of closed sets is itself a closed set.
|
|
دراسة: حفنة من الجوز يوميا تحميك من سرطان القولون
|
|
|
|
|
تنشيط أول مفاعل ملح منصهر يستعمل الثوريوم في العالم.. سباق "الأرنب والسلحفاة"
|
|
|
|
|
لتعزيز التواصل مع الزائرات الأجنبيات : العتبة العلويّة المقدّسة تُطلق دورة لتعليم اللغة الإنجليزية لخادمات القسم النسويّ
|
|
|