

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Simplicial Complexes-Geometrical Independence
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
...
25-6-2017
1783
Definition Points v0, v1, . . . , vq in some Euclidean space Rk are said to be geometrically independent (or affine independent) if the only solution of the linear system

is the trivial solution λ0 = λ1 = · · · = λq = 0.
It is straightforward to verify that v0, v1, . . . , vq are geometrically independent if and only if the vectors v1 − v0, v2 − v0, . . . , vq − v0 are linearly independent. It follows from this that any set of geometrically independent points in Rk has at most k + 1 elements. Note also that if a set consists of geometrically independent points in Rk, then so does every subset of that set.
Definition A q-simplex in Rk is defined to be a set of the form

where v0, v1, . . . , vq are geometrically independent points of Rk. The points v0, v1, . . . , vq are referred to as the vertices of the simplex. The non-negative integer q is referred to as the dimension of the simplex.
Note that a 0-simplex in Rk is a single point of Rk, a 1-simplex in Rk is a line segment in Rk , a 2-simplex is a triangle, and a 3-simplex is a tetrahedron.
Let σ be a q-simplex in Rk with vertices v0, v1, . . . , vq. If x is a point of σ then there exist real numbers t0, t1, . . . , tq such that

Moreover t0, t1, . . . , tq are uniquely determined:

Hence tj − sj = 0 for all j, since v0, v1, . . . , vq are geometrically independent. We refer to t0, t1, . . . , tq as the barycentric coordinates of the point x of σ.
Lemma 1.1 Let q be a non-negative integer, let σ be a q-simplex in Rm, and let τ be a q-simplex in Rn, where m ≥ q and n ≥ q. Then σ and τ are homeomorphic.
Proof Let v0, v1, . . . , vq be the vertices of σ, and let w0, w1, . . . , wq be the vertices of τ . The required homeomorphism h: σ → τ is given by

for all t0, t1, . . . , tq satisfying 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

A homeomorphism between two q-simplices defined as in the above proof is referred to as a simplicial homeomorphism.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)