أقرأ أيضاً
التاريخ: 6-8-2017
431
التاريخ: 6-8-2017
393
التاريخ: 8-8-2017
426
التاريخ: 6-8-2017
320
|
a+xb[[x]] , a+xb[x]
اسم الباحث: ماهرة ربيع قاسم النعمة
الجامعه والكليه: كلية التربية في جامعة تكريت
الخلاصه :
لتكن R حلقة ابدالية ذات عنصر محايد و في حقيقة الامر , إذا كان لكل زوج من عناصر R قاسم مشترك أعظم GCD في R عند ذلك تسمى R مجال GCD . والجدير بالذكر أن مجال R يسمى schreier ابتدائية اينما يكون العنصر X ينتمي الى r غير الصفري يقسم a1 a2 مع a1, a2 تنتمي الىٌ R و يمكن لـ X أن تكتب بالشكل الاتي x = x1x2 حيث أن xi تقسم ai و iالتي تساوي 1و2 . أن المجال المغلق بشكل تكامليً من schreier الابتدائية يسمى مجال ا لـ schreier. و من المعروف أن أي مجال لـGCD هو مجال لـ schreier. و فيما بعض النتائج التي تم إثباتها في هذا العمل:
(a)=a لكل a ينتمي الى A.
Let R be a commutative ring with identity .In fact , if each pair of elements of R has a Greatest Common Divisor (GCD) in R, then R is called a GCD- domain. Recall that, a domain R is called pre-Schreier if whenever a non- zero xR divides a1a2 with a1, a2 R, x can be written as x = x1x2 such that xi divides ai , i =1,2 . A pre- Schreier integrally closed domain is called Schreier domain. It is known that any GCD domain is a schreier domain. We sellect some of our results in this work:
Let A and B are two domains .
1- Let A Í B be an extension domain of A, then A+(x, y) B[x,y] is a GCD-domain if A is a GCD-domain and A=B.
2- Let A Í B be an extension domain of A and x is primal in A+xB[x], then B=As with S=U(B) ∩ A.
3- Let A Í B be an extension domain of A and x is primal in A+xB[[x]] , then B=As with S=U(B) ∩ A.
4- Let A Í B be an extension domain of A and let R=A+xB[x]. If R is pre-Schreier , then B is quotient ring of A , more precisely (B=As with S= U (B) ∩ A).
5- Let A Í B be an extension domain of A and let R=A+xB[[x]].If R is pre-Schreier, then B is quotient ring of A , more precisely (B=As with S=U(B) ∩ A).
6- A domain R is a pre-Schreier provided Rs is Pre-Schreier for some multiplicative subset S of R generated by completely primal elements .
7- Let A Í R be an extension domain .Assume that there exists a ring homomorphism :R A such that (a)=a "a A.
i- If s is a primal element of A,such that: ker() Í sR,then s is primal in R.
ii-If s Î A and s is primal in R , then s is also primal in A.
iii- If R is pre-Schreier , then A is also pre-Schreier.
8- Let A Í B be an extension domain of A and S=U(B) ∩ A.Then A + xB[x] is a pre-Schreier domain if and only if A is pre-Schreier and B=As and As is Schreier.
9- Let A Í B extension domain of A and S=U(B) ∩ A. Then A+xB[[x]] is pre-Schreier domain if and only if A is pre-Schreier . And B=As and As[[x]] is pre-Schreier domain.
10- Let A Í B be an extension domain of A , if A+xB[x] is a pre-Schreier,then so is A+(x1,…,xn)B[x1,…,xn] for each n.
11- Let A Í B be an extension domain of A, if A+xB[[x]] is pre-Schreier,then so is A+(x1,…,xn)B[[x1,…,xn]] for each n.
12- Let AÍ B be an extension domain of A and S=U(B) ∩A. Then A+xB[x] is Schreier if and only if B=As and A is Schreier.
13- Let A Í B be an extension domain of A and S= U(B) ∩ A.Then A+xB[[x]] is Schreier if and only if B=As and A is Schreier.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|