تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Past, present, and future
المؤلف: Richard Feynman, Robert Leighton and Matthew Sands
المصدر: The Feynman Lectures on Physics
الجزء والصفحة: Volume I, Chapter 17
2024-02-27
1084
Fig. 17–3. The space-time region surrounding a point at the origin.
The space-time region surrounding a given space-time point can be separated into three regions, as shown in Fig. 17–3. In one region we have space-like intervals, and in two regions, time-like intervals. Physically, these three regions into which space-time around a given point is divided have an interesting physical relationship to that point: a physical object or a signal can get from a point in region 2 to the event O by moving along at a speed less than the speed of light. Therefore, events in this region can affect the point O, can have an influence on it from the past. In fact, of course, an object at P on the negative t-axis is precisely in the “past” with respect to O; it is the same space-point as O, only earlier. What happened there then, affects O now. (Unfortunately, that is the way life is.) Another object at Q can get to O by moving with a certain speed less than c, so if this object were in a space ship and moving, it would be, again, the past of the same space-point. That is, in another coordinate system, the axis of time might go through both O and Q. So, all points of region 2 are in the “past” of O, and anything that happens in this region can affect O. Therefore region 2 is sometimes called the affective past, or affecting past; it is the locus of all events which can affect point O in any way.
Region 3, on the other hand, is a region which we can affect from O, we can “hit” things by shooting “bullets” out at speeds less than c. So, this is the world whose future can be affected by us, and we may call that the affective future. Now the interesting thing about all the rest of space-time, i.e., region 1, is that we can neither affect it now from O, nor can it affect us now at O, because nothing can go faster than the speed of light. Of course, what happens at R can affect us later; that is, if the sun is exploding “right now,” it takes eight minutes before we know about it, and it cannot possibly affect us before then.
What we mean by “right now” is a mysterious thing which we cannot define and we cannot affect, but it can affect us later, or we could have affected it if we had done something far enough in the past. When we look at the star Alpha Centauri, we see it as it was four years ago; we might wonder what it is like “now.” “Now” means at the same time from our special coordinate system. We can only see Alpha Centauri by the light that has come from our past, up to four years ago, but we do not know what it is doing “now”; it will take four years before what it is doing “now” can affect us. Alpha Centauri “now” is an idea or concept of our mind; it is not something that is really definable physically at the moment, because we have to wait to observe it; we cannot even define it right “now.” Furthermore, the “now” depends on the coordinate system. If, for example, Alpha Centauri were moving, an observer there would not agree with us because he would put his axes at an angle, and his “now” would be a different time. We have already talked about the fact that simultaneity is not a unique thing.
There are fortune tellers, or people who tell us they can know the future, and there are many wonderful stories about the man who suddenly discovers that he has knowledge about the affective future. Well, there are lots of paradoxes produced by that because if we know something is going to happen, then we can make sure we will avoid it by doing the right thing at the right time, and so on. But actually, there is no fortune teller who can even tell us the present! There is no one who can tell us what is really happening right now, at any reasonable distance, because that is unobservable. We might ask ourselves this question, which we leave to the student to try to answer: Would any paradox be produced if it were suddenly to become possible to know things that are in the space-like intervals of region 1?