النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Entropy, a Basis for Lambda Repressor Inactivation
المؤلف:
Robert Schleif
المصدر:
Genetics and Molecular Biology
الجزء والصفحة:
2nd Edition , p431-433
2025-07-10
45
The binding of dimeric repressor to operator can be described by a dissociation constant that is related to the change in the free energy via the standard thermodynamic relationship:
where KD is the dissociation constant of the dimer from operator, ∆G is the change in free energy, R is the gas constant, T is the temperature, ∆S is the change in entropy, and ∆H is the change in enthalpy.
It is natural to assume that if monomeric repressor were binding to operator, then roughly half as many contacts would be formed between repressor and DNA and roughly half as many water molecules and ions would be displaced from DNA and the protein as the repressor bound. Therefore we might write for the dissociation constant of the monomer where KM is the dissociation constant for monomer,
or KM = KD 1/2. This is not correct, however. To make this clear, let ∆S be written as the sum of the entropy changes involved with the contacts and displacement of water, ∆Sinteraction dimer plus the change in entropy involved with immobilization and orientation of the dimeric repressor, ∆Sintrinsic dimer:
∆Sdimer = ∆Sinteraction dimer + ∆Sintrinsic dimer.
The same type of equation can be written for the monomer:
∆Smonomer= ∆Sinteraction monomer + ∆Sintrinsic monomer.
Roughly the monomer makes half as many interactions as the dimer and displaces half as many water molecules and ions as it binds. Therefore
∆Sinteraction monomer = ∆Sinteraction dimer/2.
The same is not true of the intrinsic entropies. The entropy change associated with bringing repressor monomer to rest on operator by correctly positioning and orienting it is nearly the same as the change associated with the dimeric repressor. Thus
∆Smonomer ≠ ∆Sdimer/2,
and detailed calculations based on statistical mechanics or experiments show that the inequality can be severe. This is another example of the chelate effect discussed earlier. In other words, a sizable fraction of the total entropy change involved with repressor binding to DNA is associated with its correct positioning. Roughly the same entropy is required to orient a monomer or dimer, but in the case of lambda repressor, the presence of the second subunit of the dimer adds twice as much to the binding energy. Most of this additional energy can go into holding the dimer on the DNA, and hence KD is much less than KM (Fig. 1).
Fig1. Why a dimer can bind much more tightly than a momomer. Almost all the additional ∆H provided by the second monomer’s binding can go into increasing ∆G, whereas for binding of a monomer, almost no ∆G is left over to contribute to binding.
الاكثر قراءة في مواضيع عامة في الاحياء الجزيئي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
