تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Absolute Value
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
4-3-2017
1343
Introduction
The absolute value of a number is its value, or magnitute, without respect to sign. It's the "amount" you are working with expressed as a positive number, ignoring any negative sign. Or, it's the number's distance from 0 on a number line. For example, the number 9 is 9 units away from 0. Therefore its absolute value is 9. The number -9 is the same distance from zero, so its absolute value is also just 9. In both cases the magnitude, or absolute value, of your number is just plain old "9" because you've removed any negative sign that might have existed.
The absolute value leaves a positive unchanged, and makes a negative positive.
How do I write it?
An absolute value is written like this: |x|, and is read as "the absolute value of x." Note: In certain places, such as calculator and computer programs, you may see it written as abs(x), which naturally means "the absolute value of x," but |x| is the common way your teacher probably wants you to write it on your homework and tests.
Applications
Another use of the absolute value bars is actually to force a number to be negative, by writing -|x|. This takes the number, makes it positive, and then negates it. Why do we have to do it like that? Well, remember -- just putting a negative sign in front of a number doesn't always make it negative. If the number was already negative then you just made it positive! Using the absolute value guarantees we have a positive value inside the bars, so the negative sign will definitely make it negative.
Examples
|4| = 4
|-4| = 4
|4+3| = 7
|-4-3| = 7
|3-4| = 1
-|4| = -4
-|-4| = -4
The absolute value sign can be used in equations as well:
|-8| = x, thus x=8
|x| = 8, thus x=8 or x=-8. Remember that |-8| is also 8 so there are two solutions here!
|x| = -8, there are no solutions because the absolute value can never be negative.
Taking the Absolute Value of an algebraic expression
Absolute values are easy enough to compute when they contain constants (regular numbers), but absolute value equations containing variables are more difficult. Suppose we are given the following equation, and asked to solve for x:
|x+2| = 9
We can not assume that x+2 is positive or negative, so we can not simply "drop the bars." If x+2 were indeed negative, the absolute value of x+2 would really be -(x+2), since a negative times a negative equals a positive. We will solve using cases.
The first case, or possibility, is that x+2 is positive. Taking the absolute value of a positive does not change the outcome.
First Case: x + 2 = 9
The second case is that x+2 is negative. To get the absolute value of a negative, you have to negate it (which makes it positive again). Therefore |x+2| = -(x+2).
Second Case: -(x + 2) = 9
Here we can solve both cases for x.
x+2 = 9
x = 7
or
-(x+2) = 9
-x -2 = 9
-x = 11
x = -11
Our two solutions for |x+2|=9 are 7 and -11. Try them. They both work.