تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Equations-Solving Equations
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
12-3-2017
938
What is a Solution?
A Solution is a value you can put in place of a variable (such as x) that would make the equation true.
Example:
|
|
x - 2 = 4 |
|
|
|
|
|
|
|
If we put 6 in place of x we get: |
|
6 - 2 = 4 |
|
, which is true |
|
|
|
|
|
So x = 6 is a solution |
Note: try another value for x. Say x=5: you get 5-2=4 which is not true, so x=5 is not a solution.
More Than One Solution
You can have more than one solution.
Example: (x-3)(x-2) = 0
When x is 3 we get:
(3-3)(3-2) = 0 × 1 = 0
which is true
And when x is 2 we get:
(2-3)(2-2) = (-1) × 0 = 0
which is true
So the solutions are:
x = 3, or x = 2
When you gather all solutions together it is called a Solution Set
Solutions Everywhere!
Some equations are true for all allowed values and are then called Identities
Example: this is one of the trigonometric identities:
tan(θ) = sin(θ)/cos(θ)
How to Solve an Equation
There is no "one perfect way" to solve all equations.
A Useful Goal
But you will often get success if your goal is to end up with:
x = something
In other words, you want to move everything except "x" (or whatever name your variable has) over to the right hand side.
Example: Solve 3x-6 = 9
Start With |
|
3x-6 = 9 |
Add 6 to both sides: |
|
3x = 9+6 |
Divide by 3: |
|
x = (9+6)/3 |
Now we have x = something,
and a short calculation reveals that x = 5
Like a Puzzle
In fact, solving an equation is just like solving a puzzle. And like puzzles, there are things you can (and cannot) do.
Here are some things you can do:
And the more "tricks" and techniques you learn the better you will get.
Check Your Solutions
You should always check that your "solution" really is a solution.
Example: solve for x:
|
2x |
+ 3 = |
6 |
|
(x≠3) |
x - 3 |
x - 3 |
We have said x≠3 to avoid a division by zero.
Let's multiply through by (x - 3):
2x + 3(x-3) = 6
Bring the 6 to the left:
2x + 3(x-3) - 6 = 0
Expand and solve:
2x + 3x - 9 - 6 = 0
5x - 15 = 0
5(x - 3) = 0
x - 3 = 0
That can be solved by having x=3, so let us check:
|
2·3 |
+ 3 = |
6 |
|
Hang On! That would mean |
3 - 3 |
3 - 3 |
And anyway, we said at the top that x≠3, so ...
x = 3 does not actually work, and so:
There is No Solution!
That was interesting ... we thought we had found a solution, but when we looked back at the question we found it wasn't allowed!
This gives us a moral lesson:
"Solving" only gives you possible solutions, they need to be checked!
How To Check
Take your solution(s) and put them in the original equation to see if they really work.
Tips