تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Angles-Angles Around a Point
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
12-3-2017
1018
Angles around a point will always add up to 360 degrees.
The angles above all add to 360°
53° + 80° + 140° + 87° = 360°
Because of this, we can find an unknown angle.
Example: What is angle "c"? To find angle c we take the sum of the known angles and take that from 360° Sum of known angles = 110° + 75° + 50° + 63° Angle c = 360° − 298° |
Angles On One Side of A Straight Line
Angles on one side of a straight line will always add to 180 degrees.
If a line is split into 2 and you know one angle you can always find the other one.
30° + 150° = 180°
Example: If we know one angle is 45° what is angle "a" ?
Angle a is 180° − 45° = 135° |
This method can be used for several angles on one side of a straight line.
Example: What is angle "b" ?
Angle b is 180° less the sum of the other angles. Sum of known angles = 45° + 39° + 24° Angle b = 180° − 108° |
Interior Angle
An Interior Angle is an angle inside a shape.
Exterior Angle
The Exterior Angle is the angle between any side of a shape, and a line extended from the next side.
Interior Angles of Polygons
An Interior Angle is an angle inside a shape.
Triangles
The Interior Angles of a Triangle add up to 180°
90° + 60° + 30° = 180° |
80° + 70° + 30° = 180° |
It works for this triangle! |
Let's tilt a line by 10° ... It still works, because one angle went up by 10°, but the other went down by 10° |
Quadrilaterals (Squares, etc)
(A Quadrilateral has 4 straight sides)
90° + 90° + 90° + 90° = 360° |
80° + 100° + 90° + 90° = 360° |
A Square adds up to 360° |
Let's tilt a line by 10° ... still adds up to 360°! |
The Interior Angles of a Quadrilateral add up to 360° |
Because there are Two Triangles in a Square
The interior angles in this triangle add up to 180° |
... and for this square they add up to 360° ... because the square can be made from two triangles! |
Pentagon
|
A pentagon has 5 sides, and can be made from three triangles, so you know what ... ... its interior angles add up to 3 × 180° = 540° And if it is a regular pentagon (all angles the same), then each angle is 540° / 5 = 108° (Exercise: make sure each triangle here adds up to 180°, and check that the pentagon's interior angles add up to 540°) |
|
|
The Interior Angles of a Pentagon add up to 540° |
The General Rule
Each time we add a side (triangle to quadrilateral, quadrilateral to pentagon, etc), we add another 180° to the total:
|
|
|
If it is a Regular Polygon (all sides are equal, all angles are equal) |
|
Shape |
Sides |
Sum of |
Shape |
Each Angle |
Triangle |
3 |
180° |
60° |
|
Quadrilateral |
4 |
360° |
90° |
|
Pentagon |
5 |
540° |
108° |
|
Hexagon |
6 |
720° |
120° |
|
Heptagon (or Septagon) |
7 |
900° |
128.57...° |
|
Octagon |
8 |
1080° |
135° |
|
Nonagon |
9 |
1260° |
140° |
|
... |
... |
.. |
... |
... |
Any Polygon |
n |
(n-2) × 180° |
(n-2) × 180° / n |
So the general rule is:
Sum of Interior Angles = (n-2) × 180°
Each Angle (of a Regular Polygon) = (n-2) × 180° / n
Perhaps an example will help:
Example: What about a Regular Decagon (10 sides) ?
And it is a Regular Decagon so: Each interior angle = 1440°/10 = 144° |
Exterior Angles of Polygons
The Exterior Angle is the angle between any side of a shape,
and a line extended from the next side.
Note: when you add up the Interior Angle and Exterior Angle you get a straight line, 180°.
Polygons
A Polygon is any flat shape with straight sides
The Exterior Angles of a Polygon add up to 360° |
||
|
In other words the exterior angles add up to one full revolution (Exercise: try this with a square, then with some interesting polygon you invent yourself.)
|
Here is another way to think about it: |