Read More
Date: 25-3-2019
![]()
Date: 16-8-2019
![]()
Date: 15-9-2019
![]() |
At the age of 17, Bernard Mares proposed the definite integral (Borwein and Bailey 2003, p. 26; Bailey et al. 2006)
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
(OEIS A091473). Although this is within of
,
![]() |
(3) |
(OEIS A091494), it is not equal to it. Apparently, no closed-form solution is known for .
Interestingly, the integral
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
(Borwein et al. 2004, pp. 101-102) has a value fairly close to , but no other similar relationships seem to hold for other multipliers of the form
or
.
The identity
![]() |
(6) |
can be expanded to yield
![]() |
(7) |
In fact,
![]() |
(8) |
where is a Borwein integral.
REFERENCES:
Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly 113, 481-509, 2006b.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.
Sloane, N. J. A. Sequences A091473 and A091494 in "The On-Line Encyclopedia of Integer Sequences."
Trott, M. "The Mathematica Guidebooks Additional Material: Infinite Cosine Product Integral." http://www.mathematicaguidebooks.org/additions.shtml#N_2_01.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|