Read More
Date: 20-1-2020
![]()
Date: 29-11-2020
![]()
Date: 2-2-2016
![]() |
A modular inverse of an integer (modulo
) is the integer
such that
![]() |
A modular inverse can be computed in the Wolfram Language using PowerMod[b, -1, m].
Every nonzero integer has an inverse (modulo
) for
a prime and
not a multiple of
. For example, the modular inverses of 1, 2, 3, and 4 (mod 5) are 1, 3, 2, and 4.
If is not prime, then not every nonzero integer
has a modular inverse. In fact, a nonzero integer
has a modular inverse modulo
iff
and
are relatively prime. For example,
(mod 4) and
(mod 4), but 2 does not have a modular inverse.
![]() |
The triangle above (OEIS A102057) gives modular inverses of (mod
) for
, 2, ...,
and
, 3, .... 0 indicates that no modular inverse exists.
If and
are relatively prime, there exist integers
and
such that
, and such integers may be found using the Euclidean algorithm. Considering this equation modulo
, it follows that
; i.e.,
.
If and
are relatively prime, then Euler's totient theorem states that
, where
is the totient function. Hence,
.
REFERENCES:
Sloane, N. J. A. Sequence A102057 in "The On-Line Encyclopedia of Integer Sequences."
|
|
حقن الذهب في العين.. تقنية جديدة للحفاظ على البصر ؟!
|
|
|
|
|
"عراب الذكاء الاصطناعي" يثير القلق برؤيته حول سيطرة التكنولوجيا على البشرية ؟
|
|
|
|
|
المجمع العلمي يعقد اجتماعاً لمناقشة إطلاق مشروع الدورات القرآنيّة الصيفيّة
|
|
|