Read More
Date: 20-11-2019
![]()
Date: 22-12-2020
![]()
Date: 10-10-2020
![]() |
Let be the xi-function defined by
![]() |
(1) |
can be viewed as the Fourier transform of the signal
![]() |
(2) |
for . Then denote the Fourier transform of
as
,
![]() |
(3) |
de Bruijn (1950) proved that has only real zeros for
. C. M. Newman (1976) proved that there exists a constant
such that
has only real zeros iff
. The best current lower bound (Csordas et al. 1993, 1994) is
. The Riemann hypothesis is equivalent to the conjecture that
.
REFERENCES:
Csordas, G.; Odlyzko, A.; Smith, W.; and Varga, R. S. "A New Lehmer Pair of Zeros and a New Lower Bound for the de Bruijn-Newman Constant." Elec. Trans. Numer. Analysis 1, 104-111, 1993.
Csordas, G.; Smith, W.; and Varga, R. S. "Lehmer Pairs of Zeros, the de Bruijn-Newman Constant and the Riemann Hypothesis." Constr. Approx. 10, 107-129, 1994.
de Bruijn, N. G. "The Roots of Trigonometric Integrals." Duke Math. J. 17, 197-226, 1950.
Finch, S. R. "De Bruijn-Newman Constant." §2.3 2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 203-205, 2003.
Newman, C. M. "Fourier Transforms with only Real Zeros." Proc. Amer. Math. Soc. 61, 245-251, 1976.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|