Read More
Date: 29-10-2019
693
Date: 29-11-2020
2239
Date: 28-10-2020
1544
|
Let be an arbitrary trigonometric polynomial
(1) |
with real coefficients, let be a function that is integrable over the interval , and let the th derivative of be bounded in . Then there exists a polynomial for which
(2) |
for all , where is the smallest constant possible, known as the th Favard constant.
can be given explicitly by the sum
(3) |
which can be written in terms of the Lerch transcendent as
(4) |
These can be expressed by
(5) |
where is the Dirichlet lambda function and is the Dirichlet beta function. Explicitly,
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
(OEIS A050970 and A050971).
REFERENCES:
Finch, S. R. "Achieser-Krein-Favard Constants." §4. 2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 255-257, 2003.
Kolmogorov, A. N. "Zur Grössenordnung des Restgliedes Fourierscher reihen differenzierbarer Funktionen." Ann. Math. 36, 521-526, 1935.
Sloane, N. J. A. Sequences A050970 and A050970 in "The On-Line Encyclopedia of Integer Sequences."
Zygmund, A. G. Trigonometric Series, Vols. 1-2, 2nd ed. New York: Cambridge University Press, 1959.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|