المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12


Pell Equation  
  
2376   04:17 مساءً   date: 5-6-2020
Author : Beiler, A. H.
Book or Source : "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover
Page and Part : ...


Read More
Date: 1-11-2019 785
Date: 5-10-2020 641
Date: 16-12-2020 749

Pell Equation

A special case of the quadratic Diophantine equation having the form

 x^2-Dy^2=1,

(1)

where D>0 is a nonsquare natural number (Dickson 2005). The equation

 x^2-Dy^2=+/-4

(2)

arising in the computation of fundamental units is sometimes also called the Pell equation (Dörrie 1965, Itô 1987), and Dörrie calls the positive form of (2) the Fermat difference equation. While Fermat deserves credit for being the first to extensively study the equation, the erroneous attribution to Pell was perpetrated by none other than Euler himself (Nagell 1951, p. 197; Burton 1989; Dickson 2005, p. 341). The Pell equation was also solved by the Indian mathematician Bhaskara. Pell equations are extremely important in number theory, and arise in the investigation of numbers which are figurate in more than one way, for example, simultaneously square and triangular.

The equation has an obvious generalization to the Pell-like equation

 ax^2+/-by^2=c,

(3)

as well as the general second-order bivariate Diophantine equation

 ax^2+bxy+cy^2+dx+ey+f=0.

(4)

However, several different techniques are required to solve this equation for arbitrary values of ab, and c. The Wolfram Language command Reduce[f[xy] && Element[x|y, Integers]] finds solutions to the general equation (4) when they exist.

Pell equations of the form (1), as well as certain cases of the analogous equation with a minus sign on the right,

 x^2-Dy^2=-1,

(5)

can be solved by finding the continued fraction [a_0,a_1,...] of sqrt(D). Note that although the equation (5) is solvable for only certain values of D, the continued fraction technique provides solutions when they exist, and always in the case of (1), for which a solution always exists. A necessary condition that (5) be solvable is that all odd prime factors of D be of the form 4n+1, and that D cannot be doubly even (i.e., divisible by 4). However, these conditions are not sufficient for a solution to exist, as demonstrated by the equation x^2-34y^2=-1, which has no solutions in integers (Nagell 1951, pp. 201 and 204).

In all subsequent discussion, ignore the trivial solution x=1y=0. Let p_n/q_n denote the nth convergent [a_0,a_1,...,a_n], then we will have solved (1) or (5) if we can find a convergent which obeys the identity

 p_n^2-Dq_n^2=(-1)^(n+1).

(6)

Amazingly, this turns out to always be possible as a result of the fact that the continued fraction of a quadratic surd always becomes periodic at some term a_(r+1), where a_(r+1)=2a_0, i.e.,

 sqrt(D)=[a_0,a_1,...,a_r,2a_0^_].

(7)

To compute the continued fraction convergents to sqrt(D), use the usual recurrence relations

a_0 = |_sqrt(D)_|

(8)

p_0 = a_0

(9)

p_1 = a_0a_1+1

(10)

p_n = a_np_(n-1)+p_(n-2)

(11)

q_0 = 1

(12)

q_1 = a_1

(13)

q_n = a_nq_(n-1)+q_(n-2),

(14)

where |_x_| is the floor function. For reasons to be explained shortly, also compute the two additional quantities P_n and Q_n defined by

P_0 = 0

(15)

P_1 = a_0

(16)

P_n = a_(n-1)Q_(n-1)-P_(n-1)

(17)

Q_0 = 1

(18)

Q_1 = D-a_0^2

(19)

Q_n = (D-P_n^2)/(Q_(n-1))

(20)

a_n = |_(a_0+P_n)/(Q_n)_|.

(21)

Now, two important identities satisfied by continued fraction convergents are

 p_nq_(n-1)-p_(n-1)q_n=(-1)^(n+1)

(22)

 p_n^2-Dq_n^2=(-1)^(n+1)Q_(n+1)

(23)

(Beiler 1966, p. 262), so both linear

 ax-by=+/-1

(24)

and quadratic

 x^2-Dy^2=+/-c

(25)

equations are solved simply by finding an appropriate continued fraction.

Let a_(r+1)=2a_0 be the term at which the continued fraction becomes periodic (which will always happen for a quadratic surd). For the Pell equation

 x^2-Dy^2=1

(26)

with r odd, (-1)^(r+1) is positive and the solution in terms of smallest integers is x=p_r and y=q_r, where p_r/q_r is the rth convergent. If r is even, then (-1)^(r+1) is negative, but

 p_(2r+1)^2-Dq_(2r+1)^2=1,

(27)

so the solution in smallest integers is x=p_(2r+1)y=q_(2r+1). Summarizing,

 (x,y)={(p_r,q_r)   for r odd; (p_(2r+1),q_(2r+1))   for r even.

(28)

The equation

 x^2-Dy^2=-1

(29)

can be solved analogously to the equation with +1 on the right side iff r is even, but has no solution if r is odd,

 (x,y)={(p_r,q_r)   for r even; no solution   for r odd.

(30)

Given one solution (x,y)=(p,q) (which can be found as above), a whole family of solutions can be found by taking each side to the nth power,

 x^2-Dy^2=(p^2-Dq^2)^n=1.

(31)

Factoring gives

 (x+sqrt(D)y)(x-sqrt(D)y)=(p+sqrt(D)q)^n(p-sqrt(D)q)^n

(32)

and

x+sqrt(D)y = (p+sqrt(D)q)^n

(33)

x-sqrt(D)y = (p-sqrt(D)q)^n,

(34)

which gives the family of solutions

x = ((p+qsqrt(D))^n+(p-qsqrt(D))^n)/2

(35)

y = ((p+qsqrt(D))^n-(p-qsqrt(D))^n)/(2sqrt(D)).

(36)

These solutions also hold for

 x^2-Dy^2=-1,

(37)

except that n can take on only odd values.

The following table gives the smallest integer solutions (x,y) to the Pell equation with constant D<=102 (Beiler 1966, p. 254). Square D=d^2 are not included, since they would result in an equation of the form

(38)

which has no solutions (since the difference of two squares cannot be 1).

D x y D x y
2 3 2 54 485 66
3 2 1 55 89 12
5 9 4 56 15 2
6 5 2 57 151 20
7 8 3 58 19603 2574
8 3 1 59 530 69
10 19 6 60 31 4
11 10 3 61 1766319049 226153980
12 7 2 62 63 8
13 649 180 63 8 1
14 15 4 65 129 16
15 4 1 66 65 8
17 33 8 67 48842 5967
18 17 4 68 33 4
19 170 39 69 7775 936
20 9 2 70 251 30
21 55 12 71 3480 413
22 197 42 72 17 2
23 24 5 73 2281249 267000
24 5 1 74 3699 430
26 51 10 75 26 3
27 26 5 76 57799 6630
28 127 24 77 351 40
29 9801 1820 78 53 6
30 11 2 79 80 9
31 1520 273 80 9 1
32 17 3 82 163 18
33 23 4 83 82 9
34 35 6 84 55 6
35 6 1 85 285769 30996
37 73 12 86 10405 1122
38 37 6 87 28 3
39 25 4 88 197 21
40 19 3 89 500001 53000
41 2049 320 90 19 2
42 13 2 91 1574 165
43 3482 531 92 1151 120
44 199 30 93 12151 1260
45 161 24 94 2143295 221064
46 24335 3588 95 39 4
47 48 7 96 49 5
48 7 1 97 62809633 6377352
50 99 14 98 99 10
51 50 7 99 10 1
52 649 90 101 201 20
53 66249 9100 102 101 10

The first few minimal values of x and y for nonsquare D are 3, 2, 9, 5, 8, 3, 19, 10, 7, 649, ... (OEIS A033313) and 2, 1, 4, 2, 3, 1, 6, 3, 2, 180, ... (OEIS A033317), respectively. The values of D having x=2, 3, ... are 3, 2, 15, 6, 35, 12, 7, 5, 11, 30, ... (OEIS A033314) and the values of D having y=1, 2, ... are 3, 2, 7, 5, 23, 10, 47, 17, 79, 26, ... (OEIS A033318). Values of the incrementally largest minimal x are 3, 9, 19, 649, 9801, 24335, 66249, ... (OEIS A033315) which occur at D=2, 5, 10, 13, 29, 46, 53, 61, 109, 181, ... (OEIS A033316). Values of the incrementally largest minimal y are 2, 4, 6, 180, 1820, 3588, 9100, 226153980, ... (OEIS A033319), which occur at D=2, 5, 10, 13, 29, 46, 53, 61, ... (OEIS A033316).

The more complicated Pell-like equation

 x^2-Dy^2=c

(39)

with |c|<sqrt(D) has solution iff c is one of the values (-1)^kQ_k for k=1, 2, ..., r computed in the process of finding the convergents to sqrt(D) (where, as above, a_(r+1)=2a_0 is the term at which the continued fraction becomes periodic). If |c|>sqrt(D), the procedure is significantly more complicated (Beiler 1966, p. 265; Dickson 2005, pp. 387-388) and is discussed by Gérardin (1910) and Chrystal (1961).

Regardless of how it is found, if a single solution x=py=q to (39) is known, other solutions can be found. Let p and q be solutions to (39), and r and s solutions to the "unit" form

 x^2-Dy^2=1.

(40)

Then the identity

(p^2-Dq^2)(r^2-Ds^2) = (pr+/-Dqs)^2-D(ps+/-qr)^2

(41)

= c

(42)

allows larger solutions (x,y)=(pr+/-Dqs,ps+/-qr) to the c equation to be found by using incrementally larger values of the (r,s), which can be easily computed using the standard technique for the Pell equation. Such a family of solutions does not necessarily generate all solutions, however. For example, the equation

 x^2-10y^2=9

(43)

has three distinct sets of fundamental solutions, (x,y)=(7,2), (13, 4), and (57, 18). Using (42), these generate the solutions shown in the following table, from which the set of all solutions (7, 2), (13, 4), (57, 18), (253, 80), (487, 154), (2163, 684), (9607, 3038), ... can be generated.

fundamental generated solutions
(7, 2) (253, 80), (9607, 3038), (364813, 115364), (13853287, 4380794), ...
(13, 4) (487, 154), (18493, 5848), (702247, 222070), (26666893, 8432812), ...
(57, 18) (2163, 684), (82137, 25974), (3119043, 986328), (118441497, 37454490), ...

The case

 ax^2-by^2=c

(44)

can be reduced to the one above by multiplying through by a,

 (ax)^2-(ab)y^2=ac,

(45)

finding solutions in , and then selecting those for which  is an integer.

According to Dickson (2005, pp. 408 and 411), the equation

 ax^2+by^2=c

(46)

with a,b,c>0, which has either no solutions or a finite number of solutions, was solved by Gauss in 1863 using the method of exclusions and considered by Euler (1773) and Nasimoff (1885), although Euler's methods were incomplete (Smith 1965; Dickson 2005, p. 378). According to Itô (1987), this equation can be solved completely using solutions to Pell's equation. Nasimoff (1885) applied Jacobi elliptic functions to express the number of solutions of this equation for a,c odd (Dickson 2005, p. 411). Additional discussion including the connection with elliptic functions is given in Dickson (2005, pp. 387-391).

The special case of a=1 and c prime was solved by Cornacchia (Cornacchia 1908, Cox 1989, Wagon 1990). A deterministic algorithm for finding all primitive solutions to (46) for a,b,c>0 fixed relatively prime integers, c>=a+b+1, and (c,ab)=1 was given by Hardy et al. (1990). This algorithm generalizes those of Hermite (1848), Serret (1848), Brillhart (1972), Cornacchia (1908), and Wilker (1980). It requires factorization of c, and has worst case running time of O(c^(1/4)(lnc)^3(lnlnc)(lnlnlnc)), independent of a and b. An algorithmic method for finding all solutions is implemented in the Wolfram Language as Reduce[x^2 + d y^2 == n{xy}Integers].


REFERENCES:

Beiler, A. H. "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, pp. 248-268, 1966.

Brillhart, J. "Note on Representing a Prime as a Sum of Two Squares." Math. Comput. 26, 1011-1013, 1972.

Burton, D. M. Elementary Number Theory, 4th ed. Boston, MA: Allyn and Bacon, pp. 379-382 and 392, 1989.

Chrystal, G. Textbook of Algebra, 2nd ed., Vol. 2. New York: Chelsea, pp. 478-486, 1961.

Cipolla, M. "Un metodo per la risoluzione della congruenza di secondo grado." Rend. Accad. Sci. Fis. Mat. Napoli 9, 154-163, 1903.

Cohn, H. "Pell's Equation." §6.9 in Advanced Number Theory. New York: Dover, pp. 110-111, 1980.

Cornacchia, G. "Su di un metodo per la risoluzione in numeri unteri dell' equazione sum_(h=0)^(n)c_hx^(n-h)y^h=P." Giornale di Matematiche di Battaglini 46, 33-90, 1908.

Cox, D. A. Primes of the form x^2+ny^2. New York: Wiley, 1989.

Degan, C. F. Canon Pellianus. Copenhagen, Denmark, 1817.

Dickson, L. E. "Pell Equation: ax^2+bx+c Made Square." Ch. 12 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 341-400, 2005.

Dörrie, H. 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, 1965.

Euler, L. Novi Comm. Acad. Petrop. 18, 218, 1773. Reprinted in Opera Omnia, Series Prima, Vol. 3, p. 310.

Euler, L. Comm. Arith. 570. Reprinted in Opera Omnia, Series Prima, Vol. 3, p. 310.

Gérardin, A. "Formules de récurrence." Sphinx-Oedipe 5, 17-29, 1910.

Hardy, K.; Muskat, J. B.; and Williams, K. S. "A Deterministic Algorithm for Solving n=fu^2+gv^2 in Coprime Integers u and v." Math. Comput. 55, 327-343, 1990.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 91-92, 2003.

Hermite, C. "Note au sujet de l'article précédent." J. Math. Pures Appl. 13, 15, 1848.

Itô, K. (Ed.). Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, p. 450, 1987.

Lagarias, J. C. "On the Computational Complexity of Determining the Solvability or Unsolvability of the Equation X^2-DY^2=-1." Trans. Amer. Math. Soc. 260, 485-508, 1980.

Lenstra, H. W. Jr. "Solving the Pell Equation." Not. Amer. Math. Soc. 49, 182-192, 2002.

Nagell, T. "The Diophantine Equation x^2-Dy^2=1," "The Diophantine Equation x^2-Dy^2=-1," and "The Diophantine Equation u^2-Dv^2=C." §56-58 in Introduction to Number Theory. New York: Wiley, pp. 195-212, 1951.

Nasimoff, P. S. Ch. 1 in Application of Elliptic Functions to the Theory of Numbers. Moscow, 1885. French summary in Ann. sci. de l'École normale supér. 5, 23-31, 1888.

Robertson, J. "Home Page for John Robertson." https://www.jpr2718.org/.

Serret, J. A. "Sur un théorème rélatif aux nombres enti'eres." J. Math. Pures Appl. 13, 12-14, 1848.

Sloane, N. J. A. Sequences A033313, A033314, A033315, A033316, A033317, A033318, and A033319 in "The On-Line Encyclopedia of Integer Sequences."

Smith, H. J. S. Collected Mathematical Papers I. New York: Chelsea, pp. 195-202, 1965.

Smarandache, F. "Un metodo de resolucion de la ecuacion diofantica." Gaz. Math. 1, 151-157, 1988.

Smarandache, F. "Method to Solve the Diophantine Equation ax^2-by^2+c=0." In Collected Papers, Vol. 1. Lupton, AZ: Erhus University Press, 1996.

Stillwell, J. C. Mathematics and Its History. New York: Springer-Verlag, 1989.

Wagon, S. "The Euclidean Algorithm Strikes Again." Amer. Math. Monthly 97, 124-125, 1990.

Whitford, E. E. Pell Equation. New York: Columbia University Press, 1912.

Wilker, P. "An efficient Algorithmic Solution of the Diophantine Equation u^2+5v^2=m." Math. Comput. 35, 1347-1352, 1980.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.