المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الثلج
2025-01-11
خواص المتضادات الضوئية
2025-01-11
البروتوبلازم Protoplasm
2025-01-11
الجليد القاري (حقول الجليد)
2025-01-11
السحب الاصطناعي
2025-01-11
تفاعلات الهاليدات العضوية
2025-01-11

ابن عبد ربّه
10-2-2016
CERENKOV RADIATION
2-1-2021
معنى كلمة تين‌
20-1-2016
الله العالمُ بكلِّ شيء
18-09-2014
إعادة التخمرات Refermentations
15-11-2019
وصايا علي (عليه السلام) إلى جنوده و امراء الأجناد
14-10-2015

Bézout Numbers  
  
727   11:28 صباحاً   date: 11-6-2020
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 1-12-2020 673
Date: 1-12-2020 789
Date: 16-10-2019 720

Bézout Numbers

Integers (lambda,mu) for a and b that satisfy Bézout's identity

 lambdaa+mub=GCD(a,b)

are called Bézout numbers. For integers a_1, ..., a_n, the Bézout numbers are a set of numbers k_1, ..., k_n such that

 k_1a_1+k_2a_2+...+k_na_n=d,

where d is the greatest common divisor of a_1, ..., a_n.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.