Read More
Date: 19-12-2020
![]()
Date: 11-2-2020
![]()
Date: 29-10-2019
![]() |
The elliptic logarithm is generalization of integrals of the form
![]() |
for real, which can be expressed in terms of logarithmic and inverse trigonometric functions, to
![]() |
for and
real. This integral can be done analytically, but has a complicated form involving incomplete elliptic integrals of the first kind with complex parameters. The plots above show the special case
.
The elliptic logarithm is implemented in the Wolfram Language as EllipticLog[x, y
,
a, b
], where
is an unfortunate and superfluous parameter that must be set to either
or
and which multiplies the above integral by a factor of
.
The inverse of the elliptic logarithm is the elliptic exponential function.
REFERENCES:
Wolfram, S. The Mathematica Book, 5th ed. Champaign, IL: Wolfram Media, p. 788, 2003.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|