Read More
Date: 25-8-2020
1872
Date: 24-1-2020
933
Date: 14-3-2020
1054
|
The limiting rabbit sequence written as a binary fraction (OEIS A005614), where denotes a binary number (a number in base-2). The decimal value is
(1) |
(OEIS A014565).
Amazingly, the rabbit constant is also given by the continued fraction [0; , , , , ...] = [2, 2, 4, 8, 32, 256, 8192, 2097152, 17179869184, ...] (OEIS A000301), where are Fibonacci numbers with taken as 0 (Gardner 1989, Schroeder 1991). Another amazing connection was discovered by S. Plouffe. Define the Beatty sequence by
(2) |
where is the floor function and is the golden ratio. The first few terms are 1, 3, 4, 6, 8, 9, 11, ... (OEIS A000201). Then
(3) |
This is a special case of the Devil's staircase function with .
The irrationality measure of is (D. Terr, pers. comm., May 21, 2004).
REFERENCES:
Anderson, P. G.; Brown, T. C.; and Shiue, P. J.-S. "A Simple Proof of a Remarkable Continued Fraction Identity." Proc. Amer. Math. Soc. 123, 2005-2009, 1995.
Finch, S. R. "Prouhet-Thue-Morse Constant." §6.8 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 436-441, 2003.
Gardner, M. Penrose Tiles and Trapdoor Ciphers... and the Return of Dr. Matrix, reissue ed. New York: W. H. Freeman, pp. 21-22, 1989.
Schroeder, M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York: W. H. Freeman, p. 55, 1991.
Sloane, N. J. A. Sequences A000301, A000201/M2322, A005614, and A014565 in "The On-Line Encyclopedia of Integer Sequences."a
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|